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What 1s PAW?

The PAW method is ...
e A technique for doing DF'T calculations efficiently and accurately.
e An all-electron method with easy-to-control approximations.
e An elegant theory.

A method that works with smooth pseudo wave-functions that

can be expanded in a few plane waves (or expressed on coarse

grids).

Ultra-soft pseudopotentials done right!
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Advantages of PAW

e No need to deal with inert core electrons.

e Valence pseudo wave functions are smooth and without nodes

inside the augmentation spheres.

e Access to full all-electron wave functions and density. Useful for

orbital-dependent XC-functionals.




Platinum atom




Augmentation Spheres

One cutoff radius for each type of atom. Spheres should not overlap:




FElectron density

plane waves/coarse grid

logarithmic radial grids

logarithmic radial grids




The PAW transformation
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Completeness relations

For |7 — R*| < r® we must have:
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From this follows that inside the augmentation spheres, 1,, and &n
can be expanded in partial waves and pseudo partial waves

respectively:
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In the interstitial region, we have v¢,, = &n




Electron density (again)
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Electron density (continued)

n=> faldul +)_ D665 — 6565 + > n,

aj

where we have defined atomic density matrices as:
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Electron density (continued)

With these definitions:

n® =) Diéie] +n.
iJ

nt =) Doied + .
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n = an|1zn|2 + Zﬁga

we get a very simple expression for the all-electron density:
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Compensation charges

Let Z%(7) be the nuclear charge for atom a. The Coulomb energy is:

. (n(") + X, 207 = R) (n(7) + 5, 2°(7 — )

=7

We add and subtract compensation charges localized inside the

augmentation spheres:

Ec=(f+Y Z*+) [n*—a®+2%— 2%)
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Compensation charges (continued)

The compensation charges are constructed like this:

~

where g7 () = 0 for r > r:
G (7) = Cor’ exp(—a*r?) Yo (7),

The )7,,’s are chosen such that n* —n® + Z¢ — Z% has no multipole

moments:
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Compensation charges (continued)
Using p=n-+)_, Z% 5% =q% 4+ Z% and p® = n + Z%, we get:

Ec n+ZZ“+Zn - A%+ 2% — 2%

Since p® — p®* has no multipole moments, we get:

Ec = pP+2> p"(p" — %) Zp — ")
PP+ (p")? -
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Finally ...

.. we have Ec = Ec + Y. (E% — E%), where E¢ has contributions

from all of space:

(77 + 32, 227 = Bo)) (307) + 52, 2207 - R))
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and B — EZ is a correction from each augmentation sphere:
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Approximations

Frozen core states.

Truncated multipole expansion of compensation charges.

Finite number of projectors, partial waves and pseudo partial
waves:

— Hydrogen: 2 s-type, 1 p-type.
— Oxygen: 2 s-type, 2 p-type, 1 d-type.
— Copper: 2 s-type, 2 p-type, 2 d-type.

Overlapping augmentation spheres:
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Kinetic energy
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Fixchange-correlation energy

Epe = Exc T Z(Egc o E;;Lc>7
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Hamiltonian
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where U = 5E/5ﬁ = o + 9., and
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The PAW method is a generalized Kleinman-Bylander non-
local pseudopotential that adapts to the current environ-

ment!
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Orthogonality

Keep the wave functions orthogonal:

— <¢n‘¢m> — <1Zn|OA|1Zm>7
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PBE atomization energy of a
nitrogen molecule

from ASE import Atom, ListOfAtoms

from gridpaw import Calculator

8.0 # size of unit cell

0.18 # grid spacing
ListOfAtoms ([Atom(’N’, (O, O, 0), magmom=3)],

cell=(a, a, a), periodic=1)
calc = Calculator (nbands=4, xc=’PBE’, h=h)
N.SetCalculator (calc)
= N.GetPotentialEnergy ()

.1 # bond length
ListOfAtoms ([Atom(’N’, [0, O, 0]),
Atom(’N’, [0, O, 1.11)1,
cell=(a, a, a), periodic=1)
calc = Calculator (nbands=5, xc=’PBE’, h=h)
N2.SetCalculator (calc)
e2 = N2.GetPotentialEnergy()

print 2 * el - e2, ’eV’
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Convergence

11 22 221 222
10.016 10.520 | 10.519

oo 0 1 2
AE (eV) | 10.520 | 10.574 | 10.560

Dacapo | Blaha et al. | Experiment
AFE (eV) 9.611 10.546 9.909
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