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Abstract

This thesis discuss the theoretical and practical aspects of the exact treatment of exchange, within
density functional theory. The specific type of density functional scheme, is the projector aug-
mented wave (PAW) method. The exact treatment of exhange plays an important role for an
accurate description of the electronic structure of matter.

The PAW method is a pseudopotential-like approach, in which explicit calculations are only
performed on a pseudized version of the valence states. The advantage of PAW over other pse-
dopotential methods is, that it offers access to the all-electron wave functions, through a linear
transformation. This is important, as exact exchange involves overlap integrals of all states, so
access to the core states is essential.

The results of applying the method indicates that the valence-core exchange interactions play
an important role, thus justifying the use of the PAW method instead of ordinary pseudopotential
approaches, where such contributions would be inaccessible.
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Resumé

Dette projekt omhandler de teoretiske og praktiske aspekter ved beregning af eksakt exchange i
tæthedsfunktional beregninger. Dette er gjort indenfor PAW (projector augmented wave) metoden.
Bestemmelse af eksakt exchange er vigtigt for en nøjagtig beskrivelse af materialers elektroniske
struktur.

PAW metoden er af pseudopotential karakter, hvor de egentlige beregninger kun omfatter
udglattede versioner af valenstilstandene. Fordelen ved PAW frem for andre pseudopotential
metoder er, at den giver adgang til de fulde bølgefunktioner ved en lineær transformation af
de udglattede versioner. Dette er vigtigt, idet eksakt exchange involverer overlap-integraler af alle
kombinationer af bølgefunktioner, s̊a information om kernetilstandene er nødvendig for en korrekt
beskrivelse.

Beregninger udført i rapporten indikerer at valens-kerne vekselvirkning udgør en vigtig del af
exchange energien. Dette retfærdiggør brugen af PAW i stedet for andre pseudopotential metoder,
hvor s̊adanne vekselvirkninger ville være utilgængelige.
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Chapter 1

Introduction

Electronic Structure Calculations

Electronic structure calculations are the source of many ab initio, or first principles, calculations
in condensed matter physics.

In principle the full time dependent relativistic Schrödinger equation holds the promise of
accurate calculations of all properties of any material from the specification of the atomic number
of the constituents, their initial state, and the externally applied forces and electromagnetic fields
only. In practice the equations to be solved are much too complicated to solve for all but the
simplest of systems. Separating the motion of nuclei and electrons in accordance with the Born-
Oppenheimer approximation, it turns out that most physics are well described by the electronic
structure of the considered system.

If one restricts focus to the ground-state properties of time independent systems, one can make
use of Density Functional Theory (DFT), which offers a large computational simplification of the
many-electron problem. DFT also exists in a time dependent version (TDDFT), but this is rather
more involved, and will not be discussed in this text. See e.g. [1, chapter 4] for a nice review.
Ground-state properties span a very important class of properties for solids and molecules, as
this is the natural state of matter. Among these are for example equilibrium crystal structures
and lattice constants, molecular binding lengths, cohesive-, atomization-, and ionization energies,
electron affinities, reaction sites of catalysts, energy barriers for e.g. diffusion, dissociation and
adsorption, Young’s and bulk moduli, etc.

In this text all calculations on electronic structure are done within the framework of density
functional theory.

Exact Exchange and the Projector Augmented Wave Method

Although in principle exact, DFT requires knowledge of an unknown energy functional, termed
the exchange-correlation (xc) functional. The energy contribution of the xc-functional to the total
energy is relatively minor, usually less than 1%, but plays an important part in derived quantities,
for example it constitutes 50% of the binding energy of N2.

Usually sufficient accuracy can be obtained by local density-functional approximations of the
xc-functional. There is however a limit to what can be described by such local approximations. An
exact expression for the exchange part of the xc-functional is actually available, so to go beyond the
local xc approximations an exact treatment of exchange seems natural. Energetically exchange is
the dominant part of exchange-correlation (total correlation energy is typically only 10% of the size
of exchange, although it might be more important for binding energies), and in any case an exact
treatment of more parts of the total energy functional is esthetically appealing. Unfortunately
including non-local parts of the exchange energy is incompatible with local correlation, as the
large cancellation of the long range behaviors of the true non-local correlation and exact exchange
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2 1. Introduction

is not described properly. Several procedures have been proposed to correct this problem, some of
which are reviewed in this text.

Inclusion of a fraction of exact exchange has a beneficial effect on atomization energies, bond
lengths, band gaps and excitation energies of most molecules and insulating solids. This is the
motivation for my work on implementing exact exchange calculations in the program GPAW, which
is a DFT calculator developed at CAMP [2].

Determination of exact exchange requires access to the core orbitals, so an all electron method is
essential for the correct description. As evaluating the Fock integrals inherent in exact exchange is
already a very time consuming process, the traditional all electron methods are not very attractive
for an implementation. This motivates the choice of the projector augmented wave method (PAW),
which offers the speed of pseudopotential approaches, while maintaining the accuracy of all electron
methods, specifically, the access to full all electron potentials an Kohn-Sham orbitals.

Consistent with the title of my project, the initial chapters of this report presents different
approaches, and reasons, for including exact exchange in density functional calculations. The main
result of the analytic section, and my personal contribution to the subject, was the derivation of
how the non-local Fock operator and the exact exchange energy functional should be expressed in
the PAW formalism. These are the two main ingredients of most exact exchange methods.

Parallel to the analytic work, some software development has been done to implement the
method in GPAW. Currently, the working parts of the code include non-self-consistent evaluation
of the exchange energy for isolated systems only. The energy evaluation has been implemented
both in an atomic calculator, and the full PAW version for comparison of results. Comparisons
have also been performed with equivalent exchange calculations in the literature (using other than
PAW methods).

Applying exact exchange perturbatively, only total energy evaluations are obtainable. The
orbitals and KS eigen values will just be those of the xc-functional used to reach self-consistency
of the Kohn-Sham equations. The real strength of exact exchange is that it improves the eigenvalue
spectrum, and thereby also the band gap, predicted by the DFT procedure, so a self-consistent
evaluation is essential. For a self-consistent inclusion of exact exchange, a specific method must
be chosen, the simplest of which is the hybrid Hartree-Fock-Kohn-Sham (HF-KS) method. Work
on implementing this specific method has been initiated, but is not finished.

Outline of the Thesis

Chatpers 1 and 2 introduces the subject of electronic structure calculations.

Chapter 3 provides the theoretical background of density functional theory, including a descrip-
tion of the hybrid Hartree-Fock Kohn-Sham scheme for inclusion of exact exchange, and a discus-
sion of the role of exchange and correlation.

Chapter 4 describes the theory and some practical issues of how to handle infinite systems.

Chapter 5 is a review of different methods for handling orbital dependent functionals in the
standard Kohn-Sham scheme.

Chapter 6 and 7 presents the theoretical and practical aspects of the projector augmented wave
method. This is also where I derive the expressions for how exact exchange is represented in the
PAW formalism, and is thus the main part of my analytic work.

Chapter 8 shows the numerical results, which is mainly tests and benchmarking of the imple-
mented code.

Notation

The unit system used in this theoretical part, is atomic units. In this unit system e = ~ = a0 =
me = 1, and all electromagnetic expressions are written in cgs form (using Gauss and statvolt for
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magnetic and electric field strengths respectively). In SI units kinetic energies/operators would
have a prefactor of ~2/me and potential terms would have a prefactor of e2/4πε0, as compared to
equations given in atomic units.

I use a capital Ψ to indicate interacting and Φ for non-interacting many-body wave functions.
Consistently I denote, everywhere but in the PAW chapters, single particle wave functions (which
are by nature non-interacting) by a lower case φ. In the PAW chapters however, to conform to
standard literature, the Kohn-Sham wave functions are denoted by ψ while φ indicates arbitrary
basis set functions. Hopefully this explanation will prevent most confusion caused by this choice.

The term locality is used both in the meaning that a density-functional potential can depend
on density locally around the point in which it is evaluated, and in the meaning that a potential
is multiplicative. GGA approximations of the xc-potential are local in both regards, the Fock
potential is non-local in both regards, while the exact exchange potential obtained with for instance
the optimized effective potential method is a multiplicative potential, but still non-local in the sense
that it depends on the global structure of the density.
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Chapter 2

Basic Wave Function Theory

2.1 The Many-Body Problem

The many-body problem is basically the complication of solving the Schrödinger equation for
systems involving many particles. The starting point of many problems in condensed matter
physics, is the description of systems offered by the non-relativistic, time-independent Schrödinger
equation

Ĥ|Ψn〉 = En|Ψn〉 (2.1)

where Ĥ is the Hamiltonian operator, n is a complete set of quantum state labels, En are the
eigenenergies, and |Ψn〉 are the full many-body eigenstates depending on both electron and nuclei
coordinates. In absence of externally applied fields, the Hamiltonian is

Ĥ =
∑

i

P̂ 2
i

2mi
+

1
2

∑
i 6=j

QiQj

|R̂i − R̂j |
(2.2)

where the sums are over all electrons and nuclei, and mi, Qi, P̂i and R̂i are the mass, charge,
momentum- and position operator of the i’th particle (electron or nuclei) respectively. The prefac-
tor of 1/2 on the second term is present to compensate for double counting.

A great simplification of the many-body problem is achieved by the Born-Oppenheimer approx-
imation, in which the electrons are assumed to respond instantaneously to the movement of the
much heavier nuclei. This allows for the nuclei to be considered as static classical potentials. In
this case, the Hamiltonian describing the many-electron problem, can be decomposed as a kinetic
contribution of the electrons, T̂ , a contribution from the electron-electron interaction potential,
V̂ee, one from the electron-nuclei interaction potential, V̂en, and one from the nuclei-nuclei interac-
tion potential, V̂nn. In position representation the explicit form of Ĥ for a system of N electrons
and M nuclei is

Ĥ = T̂ + V̂ee + V̂en + V̂nn

= −1
2

∑
i

∇2
i +

1
2

∑
j 6=i

1
|ri − rj |

−
∑
i,k

Zk

|ri −Rk|
+

1
2

∑
l 6=k

ZkZl

|Rk −Rl|
(2.3)

where the indices i, j ∈ 1, . . . , N and k, l ∈ 1, . . . ,M . ∇2 is the Laplacian with respect to the
electron coordinates, Z is the atomic number of the nuclei and r and R are the coordinates of
the electrons and nuclei respectively. Note that the terms, V̂ee and V̂nn, are positive due to the
coulomb repulsion of charges of the same sign, whereas V̂en is negative due to the attraction of
charges of different sign.

In the Born-Oppenheimer approximation, the relevant wave functions are the electronic wave
functions describing the quantum state of the electrons, which only depends explicitly on the
electron coordinates

〈r1, r2, . . . , rN |Ψn〉 = Ψn(r1, r2, . . . , rN ) (2.4)

5



6 2. Basic Wave Function Theory

It does however still depend parametrically on the nuclei coordinates, which is essential if one
wishes to determine the forces on the atoms. Note that here and in the remainder of this text, the
spin coordinate has been suppressed for notational convenience. For a discussion on the changes
introduced by inclusion of spin, see section 2.4. The many-electron wave function must (as all
fermionic systems) be antisymmetric under the exchange of electron coordinates, i.e.

Ψ(. . . , ri, . . . , rj , . . .) = −Ψ(. . . , rj , . . . , ri, . . .) (2.5)

As the nuclei are fixed, the term V̂en in the Hamiltonian, determines an external potential in
which the electrons reside, and could equally well include additional external potentials. To allow
for this more general case, V̂en will in the future be denoted V̂ext.

The term V̂nn in (2.3) represents an additive constant to the total energy, and will for notational
simplicity be omitted in the rest of this text; one can think of it as a constant included in the
external potential. The total Hamiltonian for the electronic system in the static potential from
the fixed nuclei, will thus in the remainder of this text be written as

Ĥ = T̂ + V̂ee + V̂ext (2.6)

It should be remembered, when applying (2.6), that in the case of large external (or internal)
fields, the non-relativistic approximation might break down. The core electrons of heavy atoms for
example, have very high kinetic energies due to their tight orbits, and as such should be described
relativistically.1

Light atoms, e.g. hydrogen, or systems in general for which ∇Rψ or ∇2
Rψ are not small, are

not well described by the Born-Oppenheimer approximation. And of course only time-independent
potentials are described by the time-independent Schrödinger equation.

Even when invoking these assumptions, the many-electron problem still requires solving an
eigenvalue problem of 3N variables, and is not readily solved in the form above.

2.2 Wave Functions and Their Interpretation

The arbitrary multiplicative constant involved when solving a differential equation of the form
Ĥ|Ψn〉 = En|Ψn〉 is fixed by the normalization requirement that

〈Ψ|Ψ〉 =
∫
dr1 . . . drN |Ψ(r1, . . . , rN )|2 = 1 (2.7)

The remaining degrees of freedom involved in solving a second order partial differential equation,
i.e. the boundary conditions, are discussed in section 4.2.

For a system in a specific state Ψn, we interpret |Ψn(r1, . . . , rN )|2 as the probability density
of finding particle 1 at r1 particle 2 at r2, etc.2. Thus the normalization (2.7) indicates that the
probability of finding all electrons somewhere in space is unity.

For a system in a specific state Ψn, the expectation value of a given observable Ô is:

〈Ô〉 = 〈Ψn|Ô|Ψn〉 =
∫
dr1 . . . drNΨ∗

n(r1, . . . , rN )ÔΨn(r1, . . . , rN ) (2.8)

For example

En = 〈Ψn|Ĥ|Ψn〉 =
∫
dr1 . . . drNΨ∗

n(r1, . . . , rN )ĤΨn(r1, . . . , rN ) (2.9)

To determine expectation values, we need to know the state of the considered system. Usually
we will constrict our attention to the ground-state |Ψ0〉, which is the state occupied at zero
temperature (the state with the smallest eigenvalue En = E0).

1As only the valence electrons are chemically important, different schemes are typically applied to avoid explicit
calculations on the core states altogether. For a specific scheme, see section 6.

2As the particles are indistinguishable, and there are N ! distinct permutations of N particles, one should perhaps
rather say that N !|Ψn(r1, . . . , rN )|2dr1 . . . drN is the probability of finding any of the particles in the volume element
dr1 . . . drN centered at r1 . . . rN



2.2 Wave Functions and Their Interpretation 7

2.2.1 One and Two Particle Density Operators

The electron density describes the probability density of finding an electron at position r. The
associated operator, and its expectation value are given by

n̂ =
∑

i

δ(r− ri) (2.10a)

n(r) = 〈Ψn|n̂|Ψn〉 = N

∫
dr2 . . . drN |Ψ(r, r2, . . . , rN )|2 (2.10b)

In a similar fashion, we can define a two electron density by:

ρ̂2 =
∑
i 6=j

δ(r− ri)δ(r′ − rj) = n̂(r)n̂(r′)− δ(r− r′)n̂(r) (2.11a)

ρ2(r, r′) = 〈Ψ|ρ̂2|Ψ〉 = N(N − 1)
∫
dr3 . . . drN |Ψ(r, r′, r3, . . . , rN )|2 (2.11b)

which we interpret as the probability of finding an electron at r and one at r′, P(r ∧ r′). From
basic probability theory, it is well known that the joint probability can be found as the product
of the isolated event times the conditional event, i.e. P(r ∧ r′) = P(r)P(r′|r) or

ρ2(r, r′) = n(r)n2(r, r′) (2.12)

where n2(r, r′) is the conditional probability density of finding an electron at r′ given that one is
present at r. Clearly, if one is present at r the number of electron elsewhere is N − 1, i.e. we have
the sum rule: ∫

dr′n2(r, r′) = N − 1 (2.13)

note that the nature of the two coordinates of n2 are different due to the definition (2.12).
One can also define a pair correlation function g(r, r′) and a correlation hole nxc

3 by

ρ2(r, r′) = n(r)n2(r, r′) = n(r)n(r′)g(r, r′) = n(r) (n(r′) + nxc(r, r′)) (2.14)

The pair correlation function is symmetric in its arguments, and describes the correlation of the
two events P(r ∧ r′) = P(r)P(r′)g(r, r′). For uncorrelated events g(r, r′) = 1. The exchange-
correlation hole describes how much the conditional event differs from the isolated event. For
completely uncorrelated events, nxc = 0. From (2.13) it is clear that∫

dr′nxc(r, r′) =
∫
dr′ (n2(r, r′)− n(r′)) = −1 (2.15)

From the expression for the two particle density (2.11b) we see that the expectation value of
the electron-electron interaction operator V̂ee can be written as

〈Ψ|V̂ee|Ψ〉 = 〈Ψ| 12
∑
i 6=j

1
|ri − rj |

|Ψ〉

=
1
2

∫∫
drdr′

|r− r′|
ρ2(r, r′)

=
1
2

∫∫
drdr′

n(r)n(r′)
|r− r′|

+
1
2

∫∫
drdr′

n(r)nxc(r, r′)
|r− r′|

(2.16)

where the first term is just the classical electrostatic energy of a charge distribution, the Hartree
energy UH [n(r)], and the last term is a purely quantum mechanical contribution describing the
coulombic repulsion of individual electrons.

3The correlation hole is indexed xc for future convenience, as the convention in density-functional theory is to
divide the correlation of electrons into an ‘exchange’ part and a ‘correlation’ part.
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2.3 The Non-Interacting Many-Body Problem

The electron-electron repulsion V̂ee sums over all distinct pairs of electrons, making them intricately
correlated. This correlation is very difficult to handle in any simple way. For this reason, we now
turn to the important special case of the general Hamiltonian (2.6), in which there is no electron-
electron interaction, i.e.:

ĤNon = T̂ + V̂ext (2.17)

This system can be described by the N identical single particle systems, described by

ĥi = − 1
2∇

2
i + v(ri) (2.18a)

ĥi|φn〉 = εn|φn〉 (2.18b)

where v is the external potential of the many body system, 〈ri|φn〉 = φn(ri) are the eigenstates
of ĥi, and εn are the corresponding eigenvalues (or -energies). Here and in the remainder of this
text it is understood that the eigenfunctions and -values are ordered such that ε1 ≤ ε2 ≤ ε3 ≤ . . ..

The many-body system consisting of all N particles would, for non-interacting particles, be
described by:

ĤNon =
∑

i

ĥi (2.19a)

ĤNon|Φ0〉 = E0|Φ0〉 (2.19b)

Where the ground state many-body wave function of the non-interacting system, |Φ0〉, is a slater
determinant of the N lowest single particle eigenstates:

Φ(r1, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣
φ1(r1) · · · φ1(rN )

...
. . .

φN (r1) φN (rN )

∣∣∣∣∣∣∣ (2.20)

and
E0 = 〈Φ0|ĤNon|Φ0〉 =

∑
n

fnεn (2.21)

is the total energy of the non-interacting system. fn are the occupation numbers.
The electron density of the non-interacting system is:

n(r) = 〈Φ0|
∑

i

δ(r− ri)|Φ0〉 =
∑

n

fn|φn(r)| (2.22)

Note that interacting wave functions are indicated by ψ and non-interacting by φ. Lower
case letters indicate single particle wave functions, while upper case letters mark many-body wave
functions.

2.4 Spin

Unless stated otherwise, the spin coordinate is suppressed in all equations of this thesis. The
procedure for generalizing the equations to inclusion of spin is reviewed in this section, as this will
be needed for some considerations.

To include spin, the spatial coordinate must be supplemented by an additional spin coordinate

r → rσ (2.23)

while the spin state is simply implicitly included in the state index n.
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The coordinate transformation implies that e.g.∫
dr →

∑
σ

∫
dr (2.24)

δ(r− r′) → δσ,σ′δ(r− r′) (2.25)

If a single particle Hamiltonian does not depend upon spin, the eigenstates will be simple
products of Cartesian functions with spinors [3]

φn(r, σ) = φn(r)χσn
(σ) (2.26)

where the spinor is simply a Kronecker delta χσn
(σ) = δσn,σ.

In this way, the spin-density becomes

n(r) =
∑

n

fn|φn(r)|2 → n(rσ) =
∑

n

fnδσn,σ|φn(r)|2 (2.27)

And the total density is just n(r) =
∑

σ n(rσ).
The direct and exchange products transform according to∫∫
drdr′φ∗n(r)φn(r)φ∗n′(r′)φn′(r′) →

∫∫
drdr′

∑
σσ′

φ∗n(r)φn(r)φ∗n′(r′)φn′(r′)δσ,σn
δσ′,σn′ δσ,σn

δσ′,σn′

=
∫∫

drdr′φ∗n(r)φn(r)φ∗n′(r′)φn′(r′)∫∫
drdr′φ∗n(r)φn′(r)φ∗n′(r′)φn(r′) →

∫∫
drdr′

∑
σσ′

φ∗n(r)φn′(r)φ∗n′(r′)φn(r′)δσ,σn
δσ,σn′ δσ′,σn

δσ′,σn′

=
∫∫

drdr′δσn,σn′φ
∗
n(r)φn′(r)φ∗n′(r′)φn(r′)

(2.28)

The Hartree energy is not really changed, as

UH = 1
2

∫∫
drdr′

n(r)n(r′)
|r− r′|

→ 1
2

∫∫
drdr′

∑
σσ′

n(rσ)n(r′σ′)
|r− r′|

= 1
2

∫∫
drdr′

(
∑

σ n(rσ)) (
∑

σ′ n(r′σ′))
|r− r′|

= 1
2

∫∫
drdr′

n(r)n(r′)
|r− r′|

(2.29)

i.e. the densities are replaced by total densities (the sum of the spin densities).
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Chapter 3

Density Functional Theory

Density-functional theory (DFT) is an, in principle, exact method for obtaining the ground state
energy of a system, offering an alternative method to solving for the fully interacting many-body
wave function. As the name implies, DFT relies on the density rather than the wave functions
to provide information on a system. The basis for DFT is the Hohenberg-Kohn (HK) theorems
[4], which tells us that all ground state properties of a system can be regarded as functionals
of the ground state density. This is obviously of great numerical importance, as the basis of all
calculations are thus centered on a single real-valued function of three coordinates as opposed to
the complex valued wave functions of 3N coordinates required to describe the N particle problem
in the traditional Schrödinger approach.

Although in principle exact, DFT requires knowledge of a universal, but in general unknown
functional known as the HK functional F [n], which in practice must be approximated. In 1965
Kohn and Sham [5] developed a self-consistent scheme for approximating F [n], and determining
the ground state density. Although to date still the most widely used DFT scheme, KS-DFT is
not the only way of doing DFT. The simplest version of DFT is Thomas-Fermi (TF) theory, and
more general formulations which encompass both KS and TF theory exist. One such formulation
will be discussed in section 3.2.

The father of DFT, Walter Kohn, received the Nobel prize in 1999 [6], for his seminal work on
the theory.

3.1 Hohenberg-Kohn Theory
- The Ground State Energy

The total energy of the state Ψ is 〈Ψ|Ĥ|Ψ〉. By the variational principle, the ground state energy
is the minimum of the expectation value of the Hamiltonian

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉 (3.1)

where Ĥ = T̂ + V̂ee + V̂ext is the full many-electron Hamiltonian, and |Ψ〉 is any normalized
(〈Ψ|Ψ〉 = 1) antisymmetric many-electron wave function.

11
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The minimization (3.1) can be written as

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉

= min
n(r)→N

[
min
Ψ→n

〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉
]

= min
n(r)→N

[
min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉+
∫
drn(r)vext(r)

]
= min

n(r)→N

[
F [n] +

∫
drn(r)vext(r)

]
= min

n(r)→N
E[n]

(3.2)

where minΨ→n means minimizing over all antisymmetric wave functions producing the same elec-
tron density, n(r), and minn(r)→N is a minimization over all densities which integrates to the total
number of electrons, N . We see that the system specific part, 〈Ψ|V̂ext|Ψ〉, is independent of the
specific form of the wave function, as long as it produces the density n(r), and that the system
independent part can be collected in the universal (HK) functional

F [n] ≡ min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉 (3.3)

Note that any of the possibly degenerate wave functions producing n(r) while minimizing 〈T̂+V̂ee〉
is equally valid in the minimization above.

Equation (3.2) also defines the energy functional

E[n] = F [n] +
∫
dr n(r)vext(r) (3.4)

which when minimized yields both the ground state density n0(r) and the ground state energy
E0 = E[n0].

The minimization of the energy functional is be done with the normalization condition
∫
drn(r) =

N , i.e. that the total number of electrons is fixed. The Euler-Lagrange equation for the minimiza-
tion is1

δ

{
F [n] +

∫
dr vext(r)n(r)− µ

∫
dr n(r)

}
= 0

⇓
δF [n]
δn(r)

+ vext(r) = µ (3.5)

where the conservation of electrons is enforced by the introduced Lagrange multiplier µ, which is
adjusted such that

∫
drn(r) = N . µ can be recognized as the chemical potential of the system.

Equation (3.5) plays a central role in DFT, as it establishes a correspondence between the
external potential and the ground state density, given that the explicit form of the HK functional
is known. The correspondence is not strictly unique, as there might be several densities satisfying
(3.5) and resulting in the same (minimal) value of eq. (3.4), i.e. there might be degenerate ground
states. Furthermore the potential can only be determined up to an arbitrary additive constant, as a
constant shift of vext is compensated by an identical shift of the chemical potential (a constant shift
does not affect the position of the extremes of a functional). This additive constant is obviously
irrelevant, as a constant shift of the potential corresponds to the same physical system.

We have thus arrived at the two most important theorems of density functional theory, first
stated by Hohenberg and Kohn in 1964 [4] and therefore referred to as the HK theorems:

1Formally the Euler-Lagrange equation is a condition for (local) extremes of a functional, so one should check
that the result is indeed a (global) minimum.
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1 The ground state electron density

n(r) = N

∫
|Ψ(r, r2, . . . , rN )|2dr2 . . . drN (3.6)

uniquely determines the potential in which the electrons reside (up to an arbitrary additive
constant). In the degenerate case, any of the degenerate densities can be used to, in principle,
determine the potential.

2 The ground state energy functional is subject to a variational principle, being minimal at
the true ground state density only.

The first following from eq. (3.5) and the second from the minimization (3.2).
Since two systems can only differ by the external potential and the total number of electrons,

and since
∫
n(r)dr = N , theorem 1 states that all information about the ground state is contained

in the 3 dimensional real-valued density, including the 3N variable complex valued ground state
wave function. Which is obviously a quite remarkable result.

Theorem 2 implies that if one were able to write down the explicit form of the system indepen-
dent functional F [n] once and for all, the problem of determining any ground-state property of a
given system, would simply be a matter of minimizing the functional E[n] = F [n]+

∫
vext(r)n(r)dr

and then evaluating the observable as a functional of the minimizing density n(r). The only prob-
lem is that F [n] is not known explicitly.

Note that the procedure above follows the constrained search principle of Levy [7], in which the
only assumption on the wave functions in the minimization (3.3) is that it should be antisymmetric
and produce the density n(r), i.e. it should be N -representable. In the original proof of Hohenberg
and Kohn [4] they had to restrict the minimization to wave functions that where ν-representable,
i.e. the density should be realizable for a real system in some external potential.

3.2 The Generalized Kohn-Sham Scheme

The main idea of all DFT schemes is to construct a model system with the same ground state (g.s.)
electron density as the real system, solve the Schrödinger equation for this, and then evaluate the
total g.s. energy (or any other g.s. property) as a functional of the determined g.s. density. It
is known from the HK theorem that all observables can be represented in this way, but not how,
so the functional form has to be approximated in practice. If the model system describes most of
the energetics of the real system, it is useful to derive the energy functional for the model system,
and then only approximate the remaining part.

The scheme presented here is a generalization of the scheme proposed by Kohn and Sham in
[5], following the procedure described in [8] and [9].

We start by separating the HK functional according to

F [n] = Fs[n] +Qs[n] (3.7)

where Fs[n] is the HK functional of the model system, and Qs[n] is some approximated density-
functional defined by the above. The HK functional of the real system is F [n] = minΨ→n(r)〈Ψ|T̂ +
V̂ee|Ψ〉. If we restrict our attention to model systems described by Slater type wave functions, the
HK functional of the model system can be written as

Fs[n] = min
Φ→n(r)

S[Φ] = min
{φ}→n(r)

S[{φ}] (3.8)

where the minimization is restricted to Slater type wave functions only, and S[Φ] is a suitable
functional of this determinant defining the model system. For example S[Φ] = 〈Φ|T̂ |Φ〉 results in
the KS scheme, and S[Φ] = 〈Φ|T̂ + V̂ee|Φ〉 in the Hartree-Fock Kohn-Sham (HF-KS) scheme.
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We now define an effective external potential for the model system, such that the minimizing
density of the energy functional of the model system

Es[n] = Fs[n] +
∫
drvs(r)n(r) (3.9)

is the same as that of the real system. Doing this, we can simply evaluate the true energy functional
using the ground state of the model system according to

E0 = E[n0]

= F [n0] +
∫
drvext(r)n0(r)

= Fs[n0] +Qs[n0] +
∫
drvext(r)n0(r)

(3.10)

For the real- and the model system to have the same ground state density, the Euler-Lagrange
equations (3.5) of the two minimizations

δF [n]
δn(r)

+ vext(r) = µ
δFs[n]
δn(r)

+ vs(r) = µ (3.11)

must be equivalent (any difference between the two chemical potentials, can be absorbed in the
definition of vs(r)). This implies choosing vs(r) according to

vs(r) =
δ(F [n]− Fs[n])

δn(r)
+ vext(r) =

δQs[n]
δn(r)

+ vext(r) = vQ(r) + vext(r) (3.12)

where vQ(r) = δQs[n]/δn(r). Note that here it has been assumed that there exists an effective
potential such that the ground state density is identical for the two systems. Following the general
procedure of KS theory this is left as an unproven assumption.

With the effective potential of (3.12), we see that we can get the total energy by:

E0 = Fs[n0] +Qs[n0] +
∫
drvext(r)n0(r) = Es[n0] +Qs[n0]−

∫
drvQ(r)n0(r) (3.13)

where the term Qs[n0]−
∫
drvQ(r)n0(r) is sometimes referred to as the double counting correction

term. To evaluate this energy expression, we just need the ground state density, which we get
from the minimization of the energy functional of our model system Es[n], i.e. by performing the
minimization

Es
0 = min

n(r)→N

{
Fs[n] +

∫
drvs(r)n(r)

}
= min

Φ→N

{
S[Φ] +

∫
drvs(r)n[Φ](r)

}
(3.14)

Which is equivalent to finding the eigenstate of lowest energy of[
Ôs + v̂s

]
|Φ0〉 = Es

0 |Φ0〉 (3.15)

where Ôs|Φ〉 = ∂S[Φ]
∂〈Φ| , or equivalently the N lowest states of the generalized Kohn-Sham (GKS)

equations
[ôs + vs(r)]φn(r) = εnφn (3.16)

with fnôsφn(r) = δS[{φ}]
δφ∗

n(r) , and

Es
0 =

∑
n

fnεn + 〈Φ| ∂S
∂〈Φ|

|Φ〉 −
∑

n

〈φn|
∂S

∂〈φn|
|φn〉, n0(r) =

∑
n

fn|φn(r)|2 (3.17)

Note that the operator ôs can be both non-local and state dependent in general.
A self consistent approach is needed for solving the GKS equations (3.16), as both operators

ôs and v̂s are functionals of the orbitals, i.e. depend on the solution of the GKS equation itself.
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To summarize, the self-consistent GKS approach to the ground state energy is:

Preliminary steps:

1. Choose a model functional S[Φ] = S[{φ}]

2. Determine ôs = 1/fn|φn〉 · ∂S/∂〈φn|

3. Approximate Qs[n] = F [n]− Fs[n] and vQ[n](r) = δQs/δn(r)

Self-consistent field (SCF):

1. Guess initial states, {φ} and density n(r) e.g. from atomic orbitals

(a) Determine vs[n](r) = vQ[n](r) + vext(r) and ôs[{φ}]
(b) Find the N lowest energy eigen states of [ôs + vs(r)− εn]φn(r) = 0

(c) Calculate n(r) =
∑

i fn|φn(r)|2

(d) Repeat step a− c until n(r) has converged

2. Calculate total energy by either of the expressions

E[n] = Fs[n] +Qs[n] +
∫
drvext(r)n(r) , E[n] = Es

0 +Qs[n]−
∫
drvQ(r)n(r)

It can be shown, that first order errors in both vext and n(r) only appear to second order in E[n]
[34].

The scheme can be thought of as mapping the N -particle interacting many-electron problem
to a single particle problem with N occupied states that needs to be solved self-consistently. This
represents a major simplification, as is clearly illustrated by the example of Kohn in his Nobel
lecture [6].

Note that like F , the functionals Fs and Qs are universal functionals, so in principle only
a single (sufficiently accurate) choice of model system and a consistent approximation for Qs is
needed.

3.2.1 Choosing the Model System

There are several ways to define the model system. This section describes a few of the most widely
used procedures.

The Standard Kohn-Sham Scheme

The standard Kohn-Sham scheme is recovered if we choose as the model system, a free-electron
system, i.e. S[Φ] = 〈Φ|T̂ |Φ〉. This non-interacting system is also the only system for which we
know that the ground state is a Slater determinant. The remaining contributions to the HK
functional is then

Qs[n] = F [n]− Fs[n] = 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉 − 〈Φ
min
n(r)|T̂ |Φ

min
n(r)〉 (3.18)

where |Ψmin
n(r)〉 is the interacting many-electron wave function that minimize 〈Ψ|T̂ + V̂ee|Ψ〉 while

producing the density n(r), and |Φmin
n(r)〉 is the non-interacting many-electron wave function (Slater

determinant), that minimize 〈Φ|T̂ |Φ〉, while still producing the same density n(r).
The expectation value of the electron-electron interaction with respect to a Slater determinant

can be evaluated explicitly (see appendix A for a derivation) giving

〈Φ|V̂ee|Φ〉 = UH [n] + Ex[n] (3.19)
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where

UH [n] = 1
2

∫
drdr′

n(r)n(r′)
|r− r′|

(3.20a)

Ex[n] = − 1
2

∑
nn′

fnfn′

∫
drdr′

φ∗n(r)φn′(r)φ∗n′(r′)φn(r′)
|r− r′|

(3.20b)

Here fα are the occupation numbers, and φα(r) are the single particle wave functions constituting
Φ.

Using (3.19), Qs is expanded as

Qs[n] = 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉 − 〈Φ
min
n(r)|T̂ |Φ

min
n(r)〉

= 〈Φmin
n(r)|V̂ee|Φmin

n(r)〉+
(
〈Ψmin

n(r)|T̂ + V̂ee|Ψmin
n(r)〉 − 〈Φ

min
n(r)|T̂ + V̂ee|Φmin

n(r)〉
)

= UH [n] + Ex[n] + Ec[n]

(3.21)

where the correlation energy functional Ec[n] is defined by the above expression, and accounts for
everything that is not described by the first term, i.e.

Ec[n] ≡ 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉 − 〈Φ
min
n(r)|T̂ + V̂ee|Φmin

n(r)〉 (3.22)

The procedure corresponds to expressing the full HK functional by

F [n] = 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉

= 〈Φmin
n(r)|T̂ + V̂ee|Φmin

n(r)〉+ Ec[n]

= Ts[n] + UH [n] + Ex[n] + Ec[n]

(3.23)

where Ts is the kinetic energy of an imagined non-interacting electron gas with the same total
density as the real system, UH is the Hartree energy representing a mean-field approximation of
the electron-electron interaction. The physical significance of the last two terms Ex and Ec is less
obvious, and will be discussed in section 3.3.

This choice of model system leads to the operator ôs = t̂ = − 1
2∇

2, and the effective potential

vQ(r) = uH(r) + vx(r) + vc(r)

where uH(r) = δUH [n]/δn(r) =
∫
dr′n(r′)/|r − r′| is the Hartree potential, Exc = Ex + Ec is

the exchange-correlation energy, and vxc(r) = δExc[n]/δn(r) is the local exchange-correlation
potential.

There is no explicit expression for the correlation energy functional and it must be approxi-
mated by some suitable functional, and from this, its functional derivative vc(r) must be deter-
mined. As the exchange energy functional is only an implicit functional of the density, its functional
derivative is not easily determined. Typically approximations which are explicit functionals of the
density are made for both Ec and Ex, such that their functional derivatives are easily found. Be-
sides the difficulties of forming the functional derivative of of an implicit functional there is also
an empirical argument for making approximations of the combined exchange-correlation. It turns
out, a posteriori, that there is a large degree of cancellation between the long range effects of Ex

and Ec, such that local approximations for both actually performs better than treating exchange
exactly and correlation only locally.

For a discussion of how to construct the functional derivative of orbital dependent functionals,
see chapter 5.

From (3.16) we get the Kohn-Sham equations[
− 1

2∇
2 + uH(r) + vxc(r) + vext(r)

]
φn = εnφn (3.24)
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and the total energy expression:

E = Ts[n] + UH [n] + Exc[n] +
∫
dr n(r)vext(r)

=
∑

n

fnεn − UH [n] + Exc[n]−
∫
dr n(r)vxc(r)

(3.25)

consistent with the standard expressions.

Hybrid Hartree-Fock Kohn-Sham Schemes

In hybrid Hartree-Fock-Kohn-Sham (HF-KS) schemes, a fraction of the electron-electron inter-
action is included in the model system. Thus S[Φ] = 〈Φ|T̂ + aV̂ee|Φ〉 where a is some number
between 0 and 1. From this, we identify Qs as

Qs[n] = F [n]− Fs[n]

= 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉 − 〈Φ
min
n(r)|T̂ + aV̂ee|Φmin

n(r)〉

= (1− a)〈Φmin
n(r)|V̂ee|Φmin

n(r)〉+ 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉 − 〈Φ
min
n(r)|T̂ + V̂ee|Φmin

n(r)〉
= (1− a)(UH [n] + Ex[n]) + Ec[n]

This defines the operator ôs = −∇2/2+a(ûH +v̂NL
x ) and the local potential vQ(r) = (1−a)(uH(r)+

vx(r)) + vc. Note that the non-local exchange potential differs from the local potential in that
v̂NL

x |φn〉 = ∂Ex/fn∂〈φn| in general differs from v̂x(r) = δEx/δn(r).
From (3.16) we get the generalized Kohn-Sham equations[

− 1
2∇

2 + uH(r) + av̂NL
x + (1− a)vs

x(r) + vs
c(r) + vext(r)

]
φn = εnφn (3.26)

and the total energy expression:

E = Ts[n] + UH [n] + aEexact
x [Φ] + (1− a)Ex[n] + Ec[n] +

∫
drn(r)vext(r)

=
∑

n

fnεn − UH [n]− aEexact
x [Φ] + (1− a)Ex[n] + Ec[n]−

∫
dr((1− a)vx(r) + vc(r))n(r)

(3.27)

A feature of the hybrid HF-KS schemes is that like in ordinary KS schemes, the eigenvalue corre-
sponding to the highest occupied orbital (HOMO) is equal to the exact ionization energy I of the
real system [9]

εN = −I (3.28)

In the a = 0 limit, the hybrid HF-KS scheme reduce to the KS scheme, and at a = 1 the
scheme is equivalent to Hartree-Fock, if the correlation functional is approximated by Ec[n] = 0.

Thomas-Fermi Theory

The basic idea behind DFT is to evaluate every observable as a functional of the ground state
density, yet in the schemes described above, an auxiliary model system is introduced, for which
the GKS eigenvalue problem must be solved to find the orbitals, which are then used to determine
the density.

In Thomas-Fermi (TF) theory, the construction of a model system is skipped, and the full HK
functional is approximated directly by some explicit density functional (corresponding to letting
S = 0 and approximate Qs).
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Modeling the nuclei density by a homogeneous background charge (a jellium), the eigenstates
of the non-interacting (Kohn-Sham) Hamiltonian becomes plane waves, for which it can be shown
show that the kinetic- and exchange energies become

Ts =
3V
10

(3π2)2/3n
5/3
0 Ex = −3V

4π
(
3π2
)1/3

n
4/3
0

where n0 is the (homogeneous) density of the electrons and V is the volume of the system.
The basic idea of Thomas-Fermi theory is that if the charge density is not uniform, but varies

slowly, the energy expressions will be the same as above, but evaluated locally and then integrated
over space. Thus the approximation for the kinetic energy functional, Ts[n], and the exchange
functional, Ex[n], becomes:

Ts[n] =
∫
dr

3
10

(3π2)2/3n5/3(r) Ex[n] = −
∫
dr

3
4π
(
3π2
)1/3

n4/3(r)

Neglecting correlation altogether, the total energy functional thus becomes

E[n] = Ts[n] + UH [n] + Vext[n] + Ex[n]

=
∫
dr

3
10

(3π2)2/3n5/3(r) +
1
2

∫
drdr′

n(r)n(r′)
|r− r′|

+
∫
drn(r)vext(r)−

∫
dr

3
4

(
3
π

)1/3

n4/3(r)

Making explicit density-functional approximations of all components of the HK theorem is a
major simplification, as the minimization of the energy functional can then be done directly by
applying the Euler-Lagrange equation δE[n]/δn(r) = µ, where µ is a Lagrange multiplier (the
chemical potential), which is adjusted such that

∫
drn(r) = N . This results in

1
2
(3π2)2/3n5/3(r) +

∫
dr′

n(r′)
|r− r′|

+ vext(r)−
(

3
π

)1/3

n4/3(r) = µ (3.29)

From which the ground state density can be determined, and thereby also the ground state energy.
Unfortunately the Thomas-Fermi model makes very poor predictions of the energetics of real

systems. The problem is that the kinetic energy is the dominant energy term, making it crucial
that this is described correctly, but assuming that the electron structure is a homogeneous electron
gas, all information on the formation of electronic shells near the nuclei, is obviously lost. Such
structure is naturally included, when the kinetic energy is determined by solving the Schrödinger
equation of a real system (free electron gas), as in the KS scheme.

The original model proposed independently by Thomas in 1927 [10] and Fermi in 1928 [11]
included only the kinetic part, and among other failures predicts that formation of molecules
is always energetically unfavorable, i.e. that all molecules are unstable. The inclusion of the
exchange term was done by P. A. M. Dirac in 1930 [12], and the resulting model makes even worse
results. Because of the computational advantages of the model, several attempts have been made
to improve the model, but none coming close in accuracy to KS-type schemes. For a nice review
of different TF models, and the systems they can describe see [13].

It should be noted that TF theory predates DFT, which is based on the two articles by Ho-
henberg and Kohn [4] from 1964 and by Kohn and Sham [5] from 1965, by more than three
decades.

3.2.2 Comparison of KS and hybrid HF-KS Schemes

To compare the KS scheme with the hybrid HF-KS schemes, we compare the two energy expres-
sions:

EKS = TKS[n] + UH [n] + EKS
x [n] + EKS

c [n] +
∫
drn(r)vext(r)

EHy,a = THy,a[n] + UH [n] + aEexact
x [ΦHy,a] + (1− a)EHy,a

x [n] + EHy,a
c [n] +

∫
drn(r)vext(r)
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There is a subtle difference between the functionals that the approximated exchange and cor-
relation functionals of the two methods are designed to model. This difference stems from the
difference between the KS and the hybrid HF-KS orbitals. We can express the hybrid functionals
in terms of the KS functionals by

EHy,a
x = EKS

x + ∆Ex , ∆Ex = 〈ΦHy,a|V̂ee|ΦHy,a〉 − 〈ΦKS|V̂ee|ΦKS〉 (3.30)

EHy,a
c = EKS

c + ∆Ec , ∆Ec = 〈ΦKS|T̂ + V̂ee|ΦKS〉 − 〈ΦHy,a|T̂ + V̂ee|ΦHy,a〉 (3.31)

Usually the density functional approximations for the exchange and correlation used in hybrid
schemes are just those established within KS theory. The error caused by this is

∆EHy,a
xc = (1− a)∆Ex + ∆Ec

= 〈ΦKS|T̂ + aV̂ee|ΦKS〉 − 〈ΦHy,a|T̂ + aV̂ee|ΦHy,a〉

Using the Hellmann-Feynman theorem, and that ∆EHy,0
xc = 0, this can be written as

∆EHy,a
xc =

∫ a

0

dα
[
〈ΦKS|V̂ee|ΦKS〉 − 〈ΦHy,α|V̂ee|ΦHy,α〉

]
=
∫ a

0

dα
[
Eexact

x [ΦKS]− Eexact
x [ΦHy,α]

] (3.32)

which is believed to be small in general [9]. From the success of the hybrid HF-KS methods using
standard xc functionals, it might seem that these are actually better approximations of EHy,a

xc than
the functional EKS

xc which they where designed to approximate.

3.3 Exchange and Correlation

The Hartree and Exchange terms of the total energy is defined by the expression (3.19):

UH [n] + Ex[n] = 〈Φmin
n(r)|V̂ee|Φmin

n(r)〉 (3.33)

If one considers the electron-electron interaction as a perturbation to the non-interacting Hamil-
tonian, we can interpret the above quantity as the first order correction to the total energy due to
this perturbation. The explicit form of UH is

UH [n] = 1
2

∫
drdr′

n(r)n(r′)
|r− r′|

= 1
2

∑
nn′

fnfn′

∫
drdr′

φ∗n(r)φn(r)φ∗n′(r′)φn′(r′)
|r− r′|

(3.34)

which is just the classical electrostatic energy of the charge density n(r). This interaction clearly
includes a spurious self-interaction of each state with itself.

The explicit form of the exchange energy is

Ex[n] = − 1
2

∑
nn′

fnfn′δσnσn′

∫
drdr′

φ∗n(r)φn′(r)φ∗n′(r′)φn(r′)
|r− r′|

(3.35)

Here spin has been included, according to the prescription in section 2.4, as it is crucial for the
interpretation of exchange.

The object ‘a Slater determinant’ is constructed to satisfy the antisymmetry principle, which
is the principle leading to Pauli repulsion, so this effect is expected to show in the expression
〈Φ|V̂ee|Φ〉. In the exchange energy, (3.35), we see that the diagonal terms, n = n′, exactly cancels
the self-interaction of the Hartree term, and is thus just a classical correction of this. The remaining
n 6= n′ parts of Ex is a direct consequence of Pauli repulsion. It can be seen that Ex correlates
pairs of states with parallel spin, and gives a large negative value for any such pair, which have
non-zero overlap. This is because, in the true ground state, the Pauli exclusion principle would
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tend to keep any two electrons of parallel spin apart in space, thus the true ground state would
have a much smaller electrostatic energy than in the non-interacting case if this has overlapping
states of equal spin. All other many-electron effects are represented by the correlation functional.
In some texts exchange is referred to as static correlation, and correlation as dynamic correlation.

Note that if we write the exchange energy as

Ex[n] = −1
2

∫∫
drdr′

|r− r′|
∑

σ

∣∣∣∣∣∑
n

δσ,σn
φ∗n(r)φn(r′)

∣∣∣∣∣
2

(3.36)

we see that it is always negative,
Ex[n] < 0 (3.37)

The correlation functional was defined in equation (3.22) as

Ec[n] = 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉 − 〈Φ
min
n(r)|T̂ + V̂ee|Φmin

n(r)〉 (3.38)

i.e. it is everything that is not accounted for by using the non-interacting slater determinant to
evaluate the total energy. From eq. (3.38), we clearly see that

Ec[n] ≤ 0

as |Ψmin
n(r)〉 is the wave function that minimizes 〈T̂ + V̂ee〉. By rewriting the expression (3.38) as:

Ec[n] =
(
〈Ψmin

n(r)|T̂ |Ψ
min
n(r)〉 − 〈Φ

min
n(r)|T̂ |Φ

min
n(r)〉

)
+
(
〈Ψmin

n(r)|V̂ee|Ψmin
n(r)〉 − 〈Φ

min
n(r)|V̂ee|Φmin

n(r)〉
)

(3.39)

it is seen that the correlation energy consists of a positive kinetic correction (since Φmin
n(r) is the wave

function that minimizes 〈T̂ 〉), and a negative potential correction (since the sum is negative). In
the interacting, physical, system, the electrons would be kept apart due to the coulombic repulsion
of charged particles. Thus the real system would have a smaller electrostatic energy than the non-
interacting system (explaining the negative potential correction), and since the electrons would
thereby be restricted to a smaller part of space, they would have a larger kinetic energy.

In the same way that UH + Ex represents the first order correction to the total energy due
to the electron-electron interaction, the correlation energy represents all higher order corrections.
Schemes have been devised that construct EC using perturbation theory, at every level of the
KS SCF cycle. Although the perturbation expansion is obviously truncated at some point, the
procedure in principle leads to an ‘exact’ DFT scheme [53]. Unfortunately some physical effects
required particular types of perturbative terms to be described to infinite order for the sum to
make sense [63].

While the exact behavior of the exchange functional can be studied using the explicit formula
(3.35), the exact correlation functional is much harder to obtain information about. The exact be-
havior of the correlation potential- and energy functionals are only known in certain limiting cases
of simple model systems. These are used when constructing density functional approximations for
vc and Ec.

3.3.1 Jacob’s Ladder

Many different approximations for the exchange-correlation functional, a few of which are sum-
marized in appendix E, but they can all be placed on one of the five rungs of the Jacob’s ladder
proposed by Perdew in [14]. The concept is a ladder of accuracy ranging from the Hartree level to
the heaven of chemical accuracy. The ladder can be navigated depending on the need for accuracy
at the cost of computational effort. The five rungs of the ladder are shown on figure 3.1. The term
chemical accuracy refers to the highest accuracy available with current experimental techniques.
A few of the key quantities of molecules, and present chemical accuracy, are [52]:



3.3 Exchange and Correlation 21

Figure 3.1: Jacob’s ladder of exchange-correlation functionals. From [14].

• Binding energies: 1 kcal/mol

• Bond lengths: 0.01 Å

• Vibration frequencies: 10 cm−1

• Excitation energies: 0.1 eV

Exchange-correlation functionals are typically written in the form

Exc[n(r)] =
∫
drn(r)exc[n(r)](r)

In figure 3.1 the steps of the Jacob’s ladder indicates the number of ingredients included in the
exchange-correlation energy density exc. For example a meta-GGA functional would look like

EMGGA
xc [n(r)] =

∫
dr n(r) eMGGA

xc

(
n(r),∇n(r),∇2n(r), τ(r)

)
(3.40)

where τ is the kinetic energy density

τ(r) =
1
2

∑
n

fn|∇φi(r)|2 (3.41)

A useful theoretical tool for understanding the xc-functional (and thereby making it easier to con-
struct good approximations), is that offered by the ‘adiabatic connection method’, ACM, described
in the next section.

3.3.2 The Adiabatic Connection Formula

From the definitions of exchange, (3.33), and correlation, (3.22), the combined functional can be
expressed as:

Exc[n] = 〈Ψmin
n(r)|T̂ + V̂ee|Ψmin

n(r)〉 − 〈Φ
min
n(r)|T̂ |Φ

min
n(r)〉 − UH [n] (3.42)

or, using the definition of the exchange correlation hole (2.14)

Exc[n] =
1
2

∫∫
drdr′

n(r)nxc(r, r′)
|r− r′|

+ 〈Ψmin
n(r)|T̂ |Ψ

min
n(r)〉 − 〈Φ

min
n(r)|T̂ |Φ

min
n(r)〉 (3.43)
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It is difficult to make models for how the kinetic energy 〈T̂ 〉 is changed from the real to the KS
system, so to avoid the last two terms, the following procedure is applied:

Define |Ψmin,λ
n(r) 〉 as the many-electron wave function that minimizes 〈T̂ +λV̂ee〉, while still yield-

ing the ground-state density n(r). I.e. |Ψmin,λ
n(r) 〉 is the ground state of the Hamiltonian T̂ + λV̂ee +

vλ(r), where vλ(r) is some fictitious external potential adjusted such that 〈Ψmin,λ
n(r) |n̂|Ψ

min,λ
n(r) 〉 = n(r)

for all λ. At λ = 1, Ψmin,1
n(r) = Ψmin

n(r) is identical to the true physical wave function, and vλ = vext

is the true external potential, while at λ = 0, Ψmin,0
n(r) = Φmin

n(r) equals the Slater determinant of KS
wave functions, and vλ = vs reduce to the KS potential. This is shown in figure 3.2.

λ = 1 : The ‘real’ systemh bT + bVee + v̂ext − E0

i
|Ψmin

n 〉 = 0

λ = 0 : The Kohn-Sham systemh bT + v̂s − EKS
0

i
|Φmin

n 〉 = 0

Ĥ = T̂ + λV̂ee + vλ(r)

0 ≤ λ ≤ 1

Figure 3.2: The adiabatic connection.

Using these definitions, (3.43) can be re-expressed as

Exc[n] = 〈Ψmin,λ
n(r) |T̂ + λV̂ee|Ψmin,λ

n(r) 〉
∣∣∣
λ=1

− 〈Ψmin,λ
n(r) |T̂ + λV̂ee|Ψmin,λ

n(r) 〉
∣∣∣
λ=0

− UH [n]

=
∫ 1

0

dλ
d

dλ
〈Ψmin,λ

n(r) |T̂ + λV̂ee|Ψmin,λ
n(r) 〉 − UH [n]

=
∫ 1

0

dλ〈Ψmin,λ
n(r) |V̂ee|Ψmin,λ

n(r) 〉 − UH [n]

(3.44)

where in the last line the Hellmann-Feynman theorem has been applied.
Using (2.16) and that the ground state density is identical for each system along the adiabatic

integration path, we get:

Exc[n] =
1
2

∫∫
drdr′

n(r)n̄xc(r, r′)
|r− r′|

(3.45)

where

n̄xc(r, r′) =
∫ 1

0

dλ nλ
xc(r, r

′) (3.46)

is the coupling-constant averaged exchange-correlation hole.
In the expression (3.45) the kinetic energy contribution has been subsumed by the coupling-

constant integration of the exchange-correlation hole, otherwise the expression is identical to (3.43).
Introducing u = r′ − r, (3.45) can be re-expressed as:

Exc[n] =
1
2

∫∫
drdr′

n(r)n̄xc(r, r′)
|r− r′|

=
N

2

∫ ∞

0

du4πu2〈n̄xc(u)〉/u (3.47)

where

〈n̄xc(u)〉 =
∫
n(r)dr
N

∫
dû
4π
n̄xc(r, r + u) (3.48)
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is the system averaged (
∫
n(r)dr/N), spherically averaged (

∫
dû/4π), and coupling-constant aver-

aged (n̄xc =
∫ 1

0
dλnλ

xc) exchange-correlation hole density. From this we see that only the radial part
of the exchange-correlation hole is required for an accurate description of the exchange-correlation
energy. This explains in part the success of LDA xc-functionals, in their description of the total
energy [59]. One must keep in mind however, that the energy is only an integrated property,
differential properties like the xc-potential, the response function, KS eigen-energies etc. are more
difficult to treat accurately.

The exchange hole is defined by the λ = 0 limit of the coupling constant integration.

nx(r, r′) = nλ=0
xc (r, r′) (3.49)

At this point, the wave function is just The KS Slater determinant, and the exchange hole can be
determined explicitly by

n(r)nx(r, r′) = ρλ=0
2 (r, r′)− n(r)n(r′)

= 〈Φmin
n(r)|ρ̂2|Φmin

n(r)〉 − n(r)n(r′)

= −
∑
nn′

fnfn′φ∗n(r)φn′(r)φ∗n′(r′)φn(r′)

= −

∣∣∣∣∣∑
n

φ∗n(r)φn(r′)

∣∣∣∣∣
2

(3.50)

The derivation follows almost exactly that given in appedix A for exact exchange. From this
expression the exchange energy can also be recovered, as

Ex[n] = −1
2

∫∫
drdr′

n(r)nx(r′)
|r− r′|

= −1
2

∑
nn′

fnfn′

∫∫
drdr′

φ∗n(r)φn′(r)φ∗n′(r′)φn(r′)
|r− r′|

(3.51)

justifying the definition of the exchange hole.
From the last expression of (3.50) it follows that the exchange hole is negative:

nx(r, r′) ≤ 0 (3.52)

and since the sum rule (2.15) holds for all values of λ∫
dr′nλ

xc(r, r
′) = −1 ⇒

∫
dr′nx(r, r′) = −1 ⇒

∫
dr′n̄λ

c (r, r′) = 0 (3.53)

The connection between the two electron joint probability distribution ρ2(r, r′) and the exchange-
correlation hole is (2.14):

ρ2(r, r′) = n(r) (n(r′) + nxc(r, r′))

as this must be positive, see e.g. (2.11), it follows that

nxc(r, r′) ≥ −n(r′)

which from the interpretation of the xc-hole as the change in the total density at r′ due to placing
an electron at r, can be regarded as as the constraint the the hole cannot remove electrons that
are not there initially.

Example - The non-interacting Homogeneous Electron Gas

As an example2 of an exchange correlation hole, consider a non-interacting homogeneous electron
gas. The eigenstates of this system are the plane waves φkσn(rσ) = φk(r)χσn(σ), where

φk(r) = exp(−ik · r)/V
2In this and the following examples, spin will be included according to the prescription of section 2.4.
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In this case, it can be shown that

nx(rσ, r′σ̄) = 0

nx(rσ, r′σ) = nx(R) = − 9n
2(kFR)6

[sin(kFR)− kFR cos(kFR)]2

where n is the homogeneous total density, σ̄ is the spin anti-parallel to σ, and R = |r− r′|. This
function is shown in figure 3.3.
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Figure 3.3: The exchange hole of a homogeneous electron gas

The hole is entirely due to parallel spin interactions, as exchange does not correlate electrons
of opposite spin. The figure shows that if an electron is located at r the probability density of
finding another in the same place is reduced n/2 = n(rσ), as all equal spin electrons are completely
repelled. For the true on-top xc-hole nxc(rσ, rσ̄) = −n(rσ̄) for the anti-parallel spin also, as two
electrons cannot occupy the same place (the Coulomb repulsion would be infinite).

Example - The Hydrogen Molecule

As a further example, the hydrogen molecule is considered in two limiting cases.

The λ = 1 limit

We cannot solve the interacting system exactly, but if we as an example consider the limit of a very
large Hubbard U , i.e. strong repulsion between electrons in the same state, the true many particle
state will be the symmetrized product of the atomic orbital on one atom |1〉 with the atomic orbital
of the other atom |2〉. If we use the general rule for determining the exchange-correlation hole

n(ξ)nxc(ξ, ξ′) = 〈Ψ|n̂(ξ)n̂(ξ′)− δ(ξ − ξ′)n̂(ξ)|Ψ〉 − n(ξ)n(ξ′) (3.54)

on this system, and resolve it in the basis of the two atomic orbitals instead of Cartesian space,
we get

n(i)nxc(i, j) = 〈Ψ|n̂(i)n̂(j)− δi,j n̂(i)|Ψ〉 − n(i)n(j) = −δi,jn(i)
⇒ nxc(i, j) = −δi,j (3.55)

where it has been used that the ground state is an eigenstate of the number operator in state
space.

From this, we see that if the probability of finding an electron in state i given that there is one
in state j is completely uncorrelated if i 6= j, while it is completely repelled if i = j. This shows
the same kind of localized xc-hole as for the non-interacting homogeneous electron gas, which can
be described accurately by a GGA approximation.
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The λ = 0 limit

In the λ = 0 limit the system is non-interacting, i.e. the xc-hole is a pure exchange hole. The
ground state of the molecule is in this case the Slater determinant giving the binding molecular
orbital σg, i.e. the determinant of the two states

φ1(rσ) = σg(r)χ↑(σ)
φ2(rσ) = σg(r)χ↓(σ)

(3.56)

From the rule for Slater-determinant x-holes (3.50), we see that:

n(rσ)nx(rσ, r′σ′) = −
∑
nn′

φ∗n(rσ)φn′(rσ)φ∗n′(r′σ′)φn(r′σ) = −δσσ′ |σg(r)|2|σg(r′)|2

⇒nx(rσ, r′σ) = −|σg(r′)|2

It is seen that nx(rσ, r′σ̄) = 0, (again this is true because Pauli repulsion only correlates electrons
of parallel spin). The sum rule (2.15) is satisfied since∑

σ′

∫
dr′nx(rσ, r′σ′) =

∫
dr′nx(rσ, r′σ) = −

∫
dr′|σg(r′)|2 = −1 (3.57)

For the parallel spin x-hole nx(rσ, r′σ) = −|σg(r′)|2. This exchange hole is thus completely
delocalized in the sense that if we have an electron in r′, the probability of finding one in r, with
the same spin, is the same in all parts of space. Such a delocalized behavior of the xc-hole is
impossible to capture in any GGA approach.

3.3.3 Hybrid Functionals: Rationale for Admixture of Exact Exchange

From the adiabatic connection formula, it follows that the exchange-correlation energy can be
determined by

Exc = 〈Ψmin
n(r)|V̂ee|Ψmin

n(r)〉 − UH [n]︸ ︷︷ ︸
Uxc

+ 〈Ψmin
n(r)|T̂ |Ψ

min
n(r)〉 − 〈Φ

min
n(r)|T̂ |Φ

min
n(r)〉︸ ︷︷ ︸

Txc

= Uxc + Txc

=
∫ 1

0

dλUλ
xc

I.e. the kinetic part of the correlation energy can be incorporated into a coupling constant in-
tegration, over systems with the scaled Coulomb interaction λ/|r − r′|, in an external potential
designed such that the one electron density n(r) is held fixed.

The potential xc-energy is related to the xc-hole density by

Uλ
xc =

1
2

∫∫
drdr′

n(r)nλ
xc(r, r

′)
|r− r′|

where the xc-hole is defined in terms of the pair density ρλ
2 (r, r′) by

nλ
xc(r, r

′) =
ρλ
2 (r, r′)
n(r)

− n(r′)

The λ = 0 end of the coupling constant integration is merely the pure exchange energy of the
KS Slater determinant. Unfortunately density functional approximations (DFA) for the xc-hole
models this end of the integration quite poorly. This is seen in the example above for the hydrogen
molecule; in this case the x-hole was completely delocalized, offering little chance of being properly
described by a local or semi-local DFA. According to the authors of [42] there is also strong evidence
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that the problems of GGA’s in describing multiply-bonded molecules are primarily due to the
improper description of the exchange (λ = 0) limit. On the other hand, in the fully interacting
end of the integration λ = 1, the inclusion of correlation effects tends to make the xc-hole deeper
and more localized [1].

The original idea of a hybrid functional proposed by Becke in [45] and further developed
in his series on density-functional thermochemistry [46, 47, 48, 49] was to make a two point
approximation of the coupling constant integration

Exc =
∫ 1

0

dλUλ
xc ≈

1
2
(
Uλ=0

xc + Uλ=1
xc

)
=

1
2
(
Eexact

x + 1
2U

λ=1
xc

)
using the exact expression in the λ = 0 limit, and a local DFA for Uλ=1

xc . Using his half-and-half
hybrid with a Hartree-Fock calculation for the the exchange limit, and the local spin density (LSD)
approximation for the interacting limit, he maneged to predict better atomization energies than
most GGA’s of the time.
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Figure 3.4: The coupling constant de-
pendence of the hybrid functional

A more sophisticated procedure, proposed by Perdew,
Ernzerhof, and Burke [42], is to assume that the hybrid func-
tional has the coupling-constant dependence

Uhyb
xc,λ = UDFA

xc,λ + (Eexact
x − UDFA

xc,λ )(1− λ)n−1

where n ≥ 1 is an integer. This hybrid has the exact form
Eexact

x in the exchange limit, and reduces to the DFA in the
interacting limit, where the hole is more correctly described
by a local DFA. The suggested functional form is shown in
figure 3.4.

This form implies the hybrid functional

Ehyb
xc =

∫ 1

0

dλUhyb
xc,λ = EDFA

xc +
1
n

(Eexact
x − EDFA

xc )

From this it is then argued from a perturbation theory ar-
gument [42], why n = 4 should be the optimal choice for
molecules and insulating solids.

Hybrid functionals using 1/4 mixing of exact exchange have been termed ACM0 models, indi-
cating that it is an adiabatic-connection-method with 0 empirical parameters. Hybrid functionals
including an amount of exact exchange fitted to a data base are denoted ACM1, and hybrids mix-
ing different amounts of exact exchange, DFA exchange and DFA correlation, such as the popular
B3LYP, are denoted ACM3 functionals. The PBE0 functional (mixing 25% exact exchange with
the PBE functional) has been tested thoroughly in the papers [43, 44] for molecules, and in [37] for
solids. The verdict is that that inclusion of exact exchange has a beneficial effect on bond lengths
and atomization energies of molecules. For insulating solids lattice constants and bulk moduli are
improved, but the atomization energies are made worse. Exact exchange improves band gaps and
eigenvalue spectra for most insulating systems, but shows large over-corrections for metals.



Chapter 4

Extended Systems

Although we have seen in the preceding chapter that the problem of solving the Schrödinger
equation for N interacting electrons can be reduced to solving N non-interacting single particle
KS equations, this is still an immense task for large systems.

A very useful simplification can be made in the case of periodic systems, by the application of
Bloch’s theorem described in the following section. Bloch theory is essential for the description
of infinitely periodic systems, which in principle requires solving the KS equation in an infinitely
large domain for an infinity of states. In this case, the Bloch representation of the states, requires
only that the KS equation is solved within the unit cell of the system, and only for a representative
set of states.

4.1 Bloch Theory

Bloch theory is applicable for non-interacting systems (i.e. systems that can be described by single
particle eigenstates), in static potentials. The theorem states that if the considered system has a
translational symmetry, i.e. the (static) potential v, satisfy the relation v(r) = v(r + R) for all
Bravais lattice vectors R, then the set of single particle eigenstates {ψn}, can be represented by
a different set of (Bloch) states, {ψn,k}, satisfying the following two equivalent formulations of
Bloch’s theorem:

ψn,k(r + R) = eik·Rψn,k(r) (4.1a)

ψn,k(r) = eik·run,k(r) (4.1b)

Where un,k(r) is a function with the same periodicity as the lattice, i.e. un,k(r) = un,k(r + R).
For the Bloch states, the k index is termed the Bloch wave vector or crystal momentum, and n
the band index. Which of the two formulations (4.1a) and (4.1b) is more convenient, depends on
the choice of basis set.

Since two Bloch wave vectors differing by a reciprocal lattice vector are equivalent, we only
need to consider vectors within the first Brillouin zone (BZ), which is just the Wigner-Zeitz cell of
the reciprocal lattice. Thus the range of k vectors is inversely proportional to the size of the unit
cell. The spectrum of wave vectors is given by the boundary conditions on the edge of the crystal.
Periodic or Dirichlet conditions both imply an integer number of waves in the crystal. The density
of k states is thus directly propotional to the volume of the crystal. In total, the number of k
states, Nk, is identical to the total number of unit cells in the crystal, and the number of occupied
bands at each k point, is on average equal to the number of electrons per unit cell, although it
can vary slightly between k-points.

The total number of occupied states is, and must obviously be, identical for both Bloch and
non-Bloch representation, i.e. equal to the total number of electrons, so in this regard, not much
have been gained, but the Bloch representation actually represents several simplifications.
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28 4. Extended Systems

The first is that two states having almost the same k index are very similar, justifying that the
states are only calculated for a representative number of k-points within the first BZ. Especially for
infinitely periodic systems there are an infinity of occupied states, which in the Bloch representation
translates to a continuum of k-values, but still only a finite number of occupied bands for each
k point. Calculating an observable, e.g. the total energy, for an infinite or finite periodic system
thus amounts to picking a representative set of k vectors, solving the Kohn-Sham equation for the
(few) occupied bands, and making an appropriate average over the k vectors.

Many different schemes for picking a representative set of k points exists, see e.g. ref. [23, 24].
An additional feature of the Bloch representation is that symmetry properties of the unit cell

greatly reduce the number of distinct k vectors. The only k vectors needed are those of the
irreducible BZ, which is usually only a fraction of the BZ in size; existence of a mirror symmetry
for example reduces the BZ by a factor of two.

The Bloch representation also implies a reduction of the basis set necessary for representing
the wave functions, as will be demonstrated in the following section.

4.2 Basis Sets and Boundary Conditions

Since the Kohn-Sham equations are second order differential equations, two sets of linearly inde-
pendent boundary conditions (BC’s) must be specified.

The appropriate BC’s depend on the the nature of the considered system.

Plain Waves

The advantage of Bloch’s theorem, when using plain wave basis sets, is that the function un,k(r)
of (4.1b) is cell-periodic, and as such can be represented by the discrete expansion

un,k(r) =
∑
G

cn,k+G · eiG·r ⇒ ψn,k(r) =
∑
G

cn,k+G · ei(k+G)·r (4.2)

where the G’s are reciprocal lattice vectors (i.e. G ·R = 2πp, p ∈ Z). In principle the expansion
(4.2) requires an infinite sum, but the low energy (small G values) terms will typically be dominant,
so in practice the expansion is truncated beyond some large G. Had Bloch’s theorem not been
applied, a plane wave expansion would have to be continuous and would therefore require an
infinite basis set despite the truncation of the expansion.

Using plane waves as an expansion results in the particularly simple secular version of the
Kohn-Sham equation ∑

G′

[
1
2 |k + G′|2δGG′ + V eff

G−G′

]
cn,k+G′ = εn · cn,k+G (4.3)

where V eff
G are the expansion coefficients of Veff(r). The term in square brackets represents the

Hamiltonian matrix Hk+G,k+G′ . A nice feature is that the kinetic terms are diagonal. For large
G′ vectors, the kinetic energy Ekin = 1

2 |k + G′|2 will dominate, and the truncation of the plane
wave expansion, is usually done by choosing a cutoff energy Ec = 1

2 |k + Gc|2, beyond which all
terms of (4.3) are truncated. The size of the Hamiltonian matrix is thus (slightly) k dependent.

Real Space Grids

One can also choose to represent the wave functions on real space grids. When using this represen-
tation, one works directly with the (non-periodic) Bloch states ψn,k, utilizing eq. (4.1a) to obtain
the appropriate BC’s:

eik·Rψn,k(r) = ψn,k(r + R) (4.4a)

eik·Rn̂(r) ·∇ψn,k(r) = −n̂(r + R) ·∇ψn,k(r + R) (4.4b)
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where n̂(r) is the (outward) unit normal of the cell boundary at r.
Having specified the two BC’s (4.4), the KS equations only have to be solved in between, i.e. in

a single unit cell. Had Bloch’s theorem not been applied, one would have to solve the KS equation
in the entire domain of the crystal.

While the kinetic energy was diagonal in the plain wave representation, the effective KS po-
tential is diagonal in real space (if it is local, i.e. the HF potential is not diagonal in real space
either).

Isolated Systems

Choosing a plane wave basis set for the representation of the wave functions requires the application
of periodic (Born-Von Karman) boundary conditions, thus in practice making any system infinitely
periodic. This is the natural boundary conditions for solids. For isolated systems, e.g. molecules,
the appropriate choice is Dirichlet boundary conditions. When using plain waves, Dirichlet bound-
ary conditions can be obtained by embedding the system in a sufficiently large super-cell, such
that the wave functions are essentially zero, and has zero gradient, at the boundaries. In this case
there will be no difference between the wave functions for different k values, and typically only
the Γ point (k = (0, 0, 0)) is chosen.

Enforcing Dirichlet BC’s in real space is not a problem, which is one of the strengths of real
space basis sets. Actually one has the freedom to choose more exotic BC’s like e.g. chiral boundary
conditions, making it possible to represent for example nanotubes with a minimal unit cell.

To represent an isolated system correctly, the unit cell must be big enough that the potential is
(practically) zero at the boundaries. As the decay of potentials is generally quite slow, this implies
the use of very large cells. In real space, one can do a multipole expansion of the density, and
use these to enforce the correct boundary conditions, thus reducing the minimal unit cell to one
completely containing the density (which decays must faster than the potential). This procedure
also allows one to handle charged systems efficiently, which is non-trivial when using plain waves,
as a non-zero charge per unit cell in this case implies an infinite charge in the system (see section
8.3.1).
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Chapter 5

Orbital Dependent Functionals

5.1 Direct Functional Derivative
The Non-local Hartree-Fock Potential

If one tries to use the usual trick fiv̂φi(r) = δE
δφ∗

i (r) to obtain the potential v̂x corresponding to the
exact exchange energy expression

Ex = − 1
2

∑
ij

fifj

∫∫
drdr′

φ∗i (r)φj(r)φ∗j (r
′)φi(r′)

|r− r′|
(5.1)

one arrives at the non-local Fock potential operator v̂NL
x defined by

δEx

δφ∗i (r)
= fiv̂

NL
x φi(r) (5.2)

Resolving the exchange operator in a basis, it can be considered either a non-local potential in
real space, vNL

x (r, r′), or in state space, vNL
ij :

v̂NL
x φi(r) =

∫
dr′vNL

x (r, r′)φi(r′) =
∑

j

fjv
NL
ij (r)φj(r) (5.3)

with the two potentials given by

vNL
x (r, r′) = −

∑
j

fj

φj(r)φ∗j (r
′)

|r− r′|
(5.4a)

vNL
ij (r) = −

∫
dr′

φ∗j (r
′)φi(r′)

|r− r′|
(5.4b)

The total energy can be expressed in terms of the potential operator as

Ex = 1
2

∑
i

fi

∫
drφ∗i (r)v̂

NL
x φi(r) = 1

2

∑
i

fi〈i|v̂NL
x |i〉 (5.5)

One can also define an exchange energy density

vSla
x (r) =

1
n(r)

∑
ij

fifj

∫
dr′

φ∗i (r)φj(r)φ∗j (r
′)φi(r′)

|r− r′|
=

1
n(r)

∑
i

fiφ
∗
i (r)v̂

NL
x φi(r) (5.6)

which for historic reasons is termed the Slater potential [60]. In terms of this, the total exchange
energy is

Ex = 1
2

∫
drn(r)vSla

x (r) (5.7)
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In the Kohn-Sham scheme, the exchange-correlation potential is required to be local, so for in-
clusion of exact exchange in this scheme, different methods for obtaining the (local) exchange
potential must be applied. In the hybrid HF-KS schemes, described in section 3.2.1, the non-
locality of the exchange potential is not a problem, but this method redefines the nature of the
correlation functional, thus making the well established and thoroughly tested correlation function-
als of KS theory unusable. In reality the difference between KS and HF-KS correlation functionals
can be argued to be small (see section 3.2.2), and using non-local exchange potentials with KS
correlation potentials is the standard way of doing exact exchange in e.g. Gaussian and Vasp.

The following sections describe different procedures for obtaining local potentials from general
orbital dependent energy functionals.

5.2 Optimized Effective Potential

The optimized effective potential (OEP) method, also known as the optimized potential method
(OPM) provides the procedure for constructing a multiplicative potential from an arbitrary state
dependent energy functional. The final equation states that the exchange correlation potential can
be found as the solution of an integral equation involving summations over all (occupied as well
as unoccupied) states, making the method cumbersome to handle numerically. The method can
be used both as a method for making very accurate descriptions of potentials, or as the starting
point for making numerically faster approximations. A few such methods will be discussed in the
following sections.

The starting point is to apply the chain-rule of functional derivative’s twice

v(r) =
δE[{φ}]
δn(r)

=
∑

i

∫
dr′
∫
dr′′

[
δE

δφi(r′′)
δφi(r′′)
δvs(r′)

+ c.c.

]
δvs(r′)
δn(r)

(5.8)

where the sum is over all states i, although it can be restricted to occupied orbitals if E only
depends on occupied orbitals (since then δE/δφi(r′′) is zero for all the unoccupied orbitals).

The term δE
δφi(r)

is easily evaluated for an explicitly orbital dependent functional. The functional
derivative δφi(r′′)/δvs(r′) is a first-order quantity, and as such can be evaluated exactly using first
order perturbation theory

δφi(r′′)
δvs(r′)

= φ∗i (r
′)Gi(r′, r′′) (5.9)

with the Green’s function

Gi(r, r′) =
∑
j 6=i

φj(r)φ∗j (r
′)

εi − εj
(5.10)

The last remaining functional derivative δvs(r′)/δn(r) is the inverse of the response function,
χs(r′, r), which for a system of non-interacting electrons is

χs(r, r′) =
δn(r)
δvs(r′)

=
∑

i

fiφ
∗
i (r)Gi(r, r′)φi(r′) + c.c. (5.11)

Acting with the response function on both sides of (5.8) , and collecting the terms, yields the
integral equation ∑

i

fi

∫
dr′φ∗i (r)Gi(r, r′)

(
v(r′)− v̂NL

)
φi(r′) + c.c. = 0 (5.12)

with the, possibly but not necessarily, non-local potential v̂NL defined by

fiv̂
NLφi(r) =

δE

δφ∗i (r)
(5.13)
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If the energy functional also depend on the KS eigenvalues, there would be an additional term∑
i

δεi

δvs(r)
∂E
∂εi

=
∑

i |φi(r)|2∂E/∂εi on the right hand side of (5.12). The part∫
dr′Gi(r, r′)

(
v(r′)− v̂NL

)
φi(r′)

is sometimes denoted the orbital shift ψi(r) [64]. It is the first order shift of the orbitals with the
local potential, towards those with the non-local potential. In terms of the orbital shifts, the OEP
equation is

∑
i fiψ

∗
i (r)φi(r) + c.c. = 0.

The OEP equation (5.12) is quite difficult to solve numerically. First of all it is an integral
equation, and secondly the summation in the Green’s function (5.10) run over all states, occupied as
well as unoccupied. The denominator of the Green’s function will obviously increase monotonically,
so highly excited states becomes less important, but in practice a large number of unoccupied
states have to be included to obtain convergence. The difficulties of solving the integral equation
is illustrated by the fact that it has so far only been solved directly for spherically averaged isolated
atoms.

5.3 Approximations to the Optimized Potential Method

In the Krieger-Li-Iafrate (KLI) approximation [57], the energy difference in the denominator of
the Green’s function is approximated by a constants εl − εk = ∆ε̄. Using the closure relation∑

i φi(r)φi(r′) = δ(r−r′) the Green’s function thus becomes Gi(r, r′) ≈ (δ(r−r′)−φi(r)φ∗i (r
′))/∆ε̄.

When this is done, the actual value of the constant disappears, and the resulting equations are

v(r) =
1

2n(r)

∑
i

fiφ
∗
i (r)

(
〈i|v̂ − v̂NL|i〉+ v̂NL

)
φi(r) + c.c.

=
1

n(r)

∑
i

fi

[
φ∗i (r)v̂

NLφi(r) + |φi(r)|2〈i|v̂ − v̂NL|i〉
] (5.14)

where
〈i|v̂ − v̂NL|i〉 =

∫
drφ∗i (r)

(
v(r)− v̂NL

)
φi(r) (5.15)

The approximation of a constant energy denominator in Gi(r, r′) might seem crude, but it turns
out that the exact same equation can be derived using a mean-field approximation (the only
approximation done is neglecting a term which when averaged over the density is zero).

For the exact exchange potential, the KLI equation can be written as

vx(r) = vSla
x (r) +

∑
i

fi
|φi(r)|2

n(r)
〈i|v̂x − v̂NL

x |i〉 (5.16)

A different approximation of the OEP equation for exact exchange can be reached, by assuming
that the orbitals of HF and exact exchange only DFT are identical. This approximation leads to
the equation

vx(r) = vSla
x (r) +

∑
ij

fifj
φ∗i (r)φj(r)

n(r)
〈j|v̂x − v̂NL

x |i〉 (5.17)

which is known as the localized Hartree-Fock (LHF) method [51].
The equations (5.16) and (5.17) only define the potential to within a constant. The usual

asymptotic behavior vx(r →∞) = 0 is recovered if one neglects the HOMO term in the summation
of (5.16) or the HOMO-HOMO term of (5.17).

Since v(r) appears on both sides of the KLI equation (5.14), the potential has to be determined
by a self-consistent approach in general. In the case of exact exchange one can derive a set of
linear equations determining the constants 〈i|v̂|i〉, thus making it possible to solve (5.16) in one
evaluation.
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Besides KLI, and LHF there exists several other ways of determining approximations of the
local exchange potential, see e.g. [54, 52] for nice reviews, or [50, 53] for specific methods. Recently
(2003) Perdew and Kümmel proposed an iterative approach for solving the OEP equation [55, 56].
Starting from e.g. the KLI potential, they claim that a converged solution of the OEP equation
can be reached within 4-5 iterations of their scheme. This makes the OEP potential obtainable for
practical calculations, and has even revealed some surprising behaviors of the exact OEP potential
on nodal surfaces of the HOMO orbital.

5.4 Screened Exchange

A fundamental problem with including exact exchange instead of the local approximations in the
xc-functional, is that it is incompatible with local correlation approximations. Because of the
success of local xc-functionals, we know that there must be a large degree of cancellation between
the long range effects of exchange and correlation. This can not be exploited when using a non-
local exchange functional and a local correlation functional. This problem can either be resolved by
making a proper non-local approximation for the correlation, or to screen the exchange, such that it
becomes local. The last procedure is obviously the simplest way of handling the problem, although
it will remove some of the required features of exact exchange, i.e. the self-interaction correction
is no longer complete, the 1/r decay of the exchange potential is no longer captured correctly,
etc. Nevertheless functionals using screened exchange, seems to perform remarkably better than
ordinary exact exchange calculations in a wide range of areas. In addition, the computational cost
of evaluating exact exchange is improved by screening, as fewer k points are needed for convergence,
and in calculations using localized basis sets, the locality can be exploited to neglect the exchange
integrals involving states which are distant in space.

The most successful implementation of screened exchange, is that of Heyd, Scuseria, and
Ernzerhof [38, 39]. In their approach, the Coulomb kernel is decomposed in a short range (SR)
and a long range (LR) part using the errorfunction:

1
r

=
erfc(ωr)

r︸ ︷︷ ︸
SR

+
erf(ωr)

r︸ ︷︷ ︸
LR

where ω is an adjustable screening length. Next, the hybrid method

EGGA
x → aEexact

x + (1− a)EGGA
x

is only performed on the short ranged part of the separated xc-functional

EHSE
xc = aEexact, SR

x + (1− a)EGGA, SR
x + EGGA, LR

x + EGGA
c

this method reduces to the original GGA in the ω →∞ limit, and the hybrid version in the ω = 0
limit. The only complication is that in order to screen the Coulomb kernel of the GGA exchange
functional, it has to be put in the form

EGGA
x =

∫
drn(r)

∫
dr′

nGGA
xc (r, r′)
|r− r′|

such that there is a potential which can be screened. This is not necessarily the standard form
of the considered GGA functional, so further approximations has to be made, i.e. numerical
expansions of the analytic form of the functional. The authors have applied their method to the
PBE functional, and the resulting functional is called HSE03. This screened hybrid functional has
been tested extensively in the articles [40, 41], and shown to give good results.
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5.5 Conclusion

To include exact exchange self-consistently in the SCF, one must in some way have access to
the exchange potential. In the hybrid HF-KS schemes of section 3.2.1, the exchange potential is
simply the non-local Fock potential of Hartree-Fock theory, this however redefines the nature of
the correlation functional, making established approximations less usable. In Kohn-Sham theory,
the exchange-correlation potential must be a local multiplicative potential. Constructing a local
potential from an orbital dependent functional is a quite complicated, i.e. computationally time
consuming, process and approximations are needed to make the approach feasible in practice. Con-
struction of the local exchange potential can be achieved at several levels, climbing the following
ladder of accuracy (and complexity):

• Slater potential: vx(r) = vSla
x (r)

• KLI: vx(r) = vSla
x (r) +

∑
i fi|φi(r)|2〈i|v̂x − v̂NL

x |i〉/n(r)

• LHF: vx(r) = vSla
x (r) +

∑
ij fifjφ

∗
i (r)φj(r)〈j|v̂x − v̂NL

x |i〉/n(r)

• OEP:
∑

i fi

∫
dr′φ∗i (r)Gi(r, r′)

(
vx(r′)− v̂NL

x

)
φi(r′) + c.c. = 0

where the OEP level can also be reached by an iterative scheme from one of the lower rungs of
the ladder [55].
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Chapter 6

Projector Augmented Wave
Method

By the requirement of orthogonality, the wave functions have very sharp features close to the core,
as all the states are non-zero in this region. Further out only the valence states are non-zero,
resulting in much smoother wave functions in this region. The oscillatory behavior in the core
regions, requires a very large set of plane waves, or equivalently a very fine grid, to be described
correctly. One way of solving this problem is the use of pseudopotentials in which the collective
system of nuclei and core electrons are described by an effective, much smoother, potential. The
KS equations are then solved for the valence electrons only. The pseudopotentials are constructed
such that the correct scattering potential is obtained beyond a certain radius from the core. This
method reduces the number of wave functions to be calculated, since the pseudo potentials only
have to be calculated and tabulated once for each type of atom, so that only calculations on
the valence states are needed. It justifies the neglect of relativistic effects in the KS equations,
since the valence electrons are non-relativistic (the pseudopotentials describing core states are of
course constructed with full consideration of relativistic effects). The technique also removes the
unwanted singular behavior of the ionic potential at the lattice points.

The drawback of the method is that all information on the full wave function close to the nuclei
is lost. This can influence the calculation of certain properties, such as hyperfine parameters, and
electric field gradients. Another problem is that one has no before hand knowledge of when the
approximation yields reliable results.

A different approach is the augmented-plane-wave method (APW), in which space is divided
into atom-centered augmentation spheres inside which the wave functions are taken as some atom-
like partial waves, and a bonding region outside the spheres, where some envelope functions are
defined. The partial waves and envelope functions are then matched at the boundaries of the
spheres.

A more general approach is the projector augmented wave method (PAW) presented here, which
offers APW as a special case [26], and the pseudopotential method as a well defined approximation
[58]. The PAW method was first proposed by Blöchl in 1994 [25].

6.1 The Transformation Operator

The features of the wave functions, are very different in different regions of space. In the bonding
region it is smooth, but near the nuclei it displays rapid oscillations, which are very demanding
on the numerical representation of the wave functions. To address this problem, we seek a linear
transformation T̂ which takes us from an auxiliary smooth wave function |ψ̃n〉 to the true all
electron Kohn-Sham single particle wave function |ψn〉

|ψn〉 = T̂ |ψ̃n〉 (6.1)

37
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where n is the quantum state label, containing a k index, a band index, and a spin index.
This transformation yields the transformed KS equations

T̂ †ĤT̂ |ψ̃n〉 = εnT̂ †T̂ |ψ̃n〉 (6.2)

which needs to be solved instead of the usual KS equation. Now we need to define T̂ in a suitable
way, such that the auxiliary wave functions obtained from solving (6.2) becomes smooth.

Since the true wave functions are already smooth at a certain minimum distance from the core,
T̂ should only modify the wave function close to the nuclei. We thus define

T̂ = 1 +
∑

a

T̂ a (6.3)

where a is an atom index, and the atom-centered transformation, T̂ a, has no effect outside a
certain atom-specific augmentation region |r −Ra| < ra

c . The cut-off radii, ra
c should be chosen

such that there is no overlap of the augmentation spheres.
Inside the augmentation spheres, we expand the true wave function in the partial waves φa

i ,
and for each of these partial waves, we define a corresponding auxiliary smooth partial wave φ̃a

i ,
and require that

|φa
i 〉 = (1 + T̂ a)|φ̃a

i 〉 ⇔ T̂ a|φ̃a
i 〉 = |φa

i 〉 − |φ̃a
i 〉 (6.4)

for all i, a. This completely defines T̂ , given φ and φ̃.
Since T̂ a should do nothing outside the augmentation sphere, we see from (6.4) that we must

require the partial wave and its smooth counterpart to be identical outside the augmentation
sphere

∀a, φa
i (r) = φ̃a

i (r), for r > ra
c

where φa
i (r) = 〈r|φa

i 〉 and likewise for φ̃a
i .

If the smooth partial waves form a complete set inside the augmentation sphere, we can formally
expand the smooth all electron wave functions as

|ψ̃n〉 =
∑

i

P a
ni|φ̃a

i 〉, for |r−Ra| < ra
c (6.5)

where P a
ni are some, for now, undetermined expansion coefficients.

Since |φa
i 〉 = T̂ |φ̃a

i 〉 we see that the expansion

|ψn〉 = T̂ |ψ̃n〉 =
∑

i

P a
ni|φa

i 〉, for |r−Ra| < ra
c (6.6)

has identical expansion coefficients, P a
ni.

As we require T̂ to be linear, the coefficients P a
ni must be linear functionals of |ψ̃n〉, i.e.

P a
ni = 〈p̃a

i |ψ̃n〉 =
∫
drp̃a∗

i (r−Ra)ψ̃n(r) (6.7)

where |p̃a
i 〉 are some fixed functions termed smooth projector functions.

As there is no overlap between the augmentation spheres, we expect the one center expansion
of the smooth all electron wave function, |ψ̃a

n〉 =
∑

i |φ̃a
i 〉〈p̃a

i |ψ̃n〉 to reduce to |ψ̃n〉 itself inside the
augmentation sphere defined by a. Thus, the smooth projector functions must satisfy∑

i

|φ̃a
i 〉〈p̃a

i | = 1 (6.8)

inside each augmentation sphere. This also implies that

〈p̃a
i1 |φ̃

a
i2〉 = δi1,i2 , for |r−Ra| < ra

c (6.9)
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i.e. the projector functions should be orthonormal to the smooth partial waves inside the augmen-
tation sphere. There are no restrictions on p̃a

i outside the augmentation spheres, so for convenience
we might as well define them as local functions, i.e. p̃a

i (r) = 0 for r > ra
c .

Note that the completeness relation (6.8) is equivalent to the requirement that p̃a
i should

produce the correct expansion coefficients of (6.5)-(6.6), while (6.9) is merely an implication of
this restriction. Translating (6.8) to an explicit restriction on the projector functions is a rather
involved procedure, but according to Blöchl, [25], the most general form of the projector functions
is:

〈p̃a
i | =

∑
j

({〈fa
k |φ̃a

l 〉})−1
ij 〈f

a
j | (6.10)

where |fa
j 〉 is any set of linearly independent functions. The projector functions will be localized

if the functions |fa
j 〉 are localized.

Using the completeness relation (6.8), we see that

T̂ a =
∑

i

T̂ a|φ̃a
i 〉〈p̃a

i | =
∑

i

(
|φa

i 〉 − |φ̃a
i 〉
)
〈p̃a

i |

where the first equality is true in all of space, since (6.8) holds inside the augmentation spheres
and outside T̂ a is zero, so anything can be multiplied with it. The second equality is due to (6.4)
(remember that |φa

i 〉 − |φ̃a
i 〉 = 0 outside the augmentation sphere). Thus we conclude that

T̂ = 1 +
∑

a

∑
i

(
|φa

i 〉 − |φ̃a
i 〉
)
〈p̃a

i | (6.11)

To summarize, we obtain the all electron KS wave function ψn(r) = 〈r|ψn〉 from the transfor-
mation

ψn(r) = ψ̃n(r) +
∑

a

∑
i

(
φa

i (r)− φ̃a
i (r)

)
〈p̃a

i |ψ̃n〉 (6.12)

where the smooth (and thereby numerically convenient) auxiliary wave function ψ̃n(r) is obtained
by solving the eigenvalue equation (6.2).

The transformation (6.12) is expressed in terms of the three components: a) the partial waves
φa

i (r), b) the smooth partial waves φ̃a
i (r), and c) the smooth projector functions p̃a

i (r).
The restriction on the choice of these sets of functions are: a) Since the partial- and smooth

partial wave functions are used to expand the all electron wave functions, i.e. are used as atom-
specific basis sets, these must be complete (inside the augmentation spheres). b) the smooth
projector functions must satisfy (6.8), i.e. be constructed according to (6.10). All remaining
degrees of freedom are used to make the expansions converge as fast as possible, and to make the
functions termed ‘smooth’, as smooth as possible. For a specific choice of these sets of functions,
see section 7.2. As the partial- and smooth partial waves are merely used as basis sets they can be
chosen as real functions (any imaginary parts of the functions they expand, are then introduced
through the complex expansion coefficients P a

ni). In the remainder of this document φ and φ̃ will
be assumed real.

Note that the sets of functions needed to define the transformation are system independent,
and as such they can conveniently be pre-calculated and tabulated for each element of the periodic
table.

For future convenience, we also define the one center expansions

ψa
n(r) =

∑
i

φa
i (r)〈p̃a

i |ψ̃n〉 (6.13a)

ψ̃a
n(r) =

∑
i

φ̃a
i (r)〈p̃a

i |ψ̃n〉 (6.13b)

In terms of these, the all electron KS wave function is

ψn(r) = ψ̃n(r) +
∑

a

(
ψa

n(r−Ra)− ψ̃a
n(r−Ra)

)
(6.14)
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So what have we achieved by this transformation? The trouble of the original KS wave func-
tions, was that they displayed rapid oscillations in some parts of space, and smooth behavior in
other parts of space. By the decomposition (6.12) we have separated the original wave functions
into auxiliary wave functions which are smooth everywhere and a contribution which contains
rapid oscillations, but only contributes in certain, small, areas of space. This decomposition is
shown on the front page for the hydrogen molecule. Having separated the different types of waves,
these can be treated individually. The localized atom centered parts, are indicated by a superscript
a, and can efficiently be represented on atom centered radial grids. Smooth functions are indicated
by a tilde ˜. The delocalized parts (no superscript a) are all smooth, and can thus be represented
on coarse Fourier- or real space grids.

6.2 The Frozen Core Approximation

In the frozen core approximation, it is assumed that the core states are naturally localized within
the augmentation spheres, and that the core states of the isolated atoms are not changed by the
formation of molecules or solids. Thus the core KS states are identical to the atomic core states:

0 1 2 3 4
r (Bohr)
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1

2
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4s
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6s
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4p
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4f

rc

5d
6s

5p

[Pt] = [Xe]4f145d96s1

  |--- core ---||- valence -|

Figure 6.1: The core states of Platinum

|ψc
n〉 = |φa,core

α 〉
where the index n on the left hand site refers to both
a specific atom, a, and an atomic state, α.

In this approximation only valence states are in-
cluded in the expansions of |ψn〉, (6.6), and |ψ̃n〉, (6.5).

Figure 6.1, shows the atomic states of Platinum in
its ground state, obtained with an atomic DFT pro-
gram at an LDA level, using spherical averaging, i.e.
a spin-compensated calculation, assuming the degen-
erate occupation 9/10 of all 5d states, and both of the
6s states half filled. It is seen that at the typical length
of atomic interaction (the indicated cut-off rc = 2.5
Bohr is approximately half the inter-atomic distance
in bulk Pt), only the 5d and 6s states are non-zero.

6.3 Expectation Values

The expectation value of an operator Ô is, within the frozen core approximation, given by

〈Ô〉 =
val∑
n

fn〈ψn|Ô|ψn〉+
∑

a

core∑
α

〈φa,core
α |Ô|φa,core

α 〉 (6.15)

using that 〈ψn|Ô|ψn〉 = 〈ψ̃n|T̂ †ÔT̂ |ψ̃n〉, and skipping the state index for notational convenience,
we see that

〈ψ|Ô|ψ〉 = 〈ψ̃ +
∑

a

(ψa − ψ̃a)|Ô|ψ̃ +
∑

a

(ψa − ψ̃a)〉

= 〈ψ̃|Ô|ψ̃〉+
∑
aa′

〈ψa − ψ̃a|Ô|ψa′ − ψ̃a′〉+
∑

a

(
〈ψ̃|Ô|ψa − ψ̃a〉+ 〈ψa − ψ̃a|Ô|ψ̃〉

)
= 〈ψ̃|Ô|ψ̃〉+

∑
a

(
〈ψa|Ô|ψa〉 − 〈ψ̃a|Ô|ψ̃a〉

)
+
∑

a

(
〈ψa − ψ̃a|Ô|ψ̃ − ψ̃a〉+ 〈ψ̃ − ψ̃a|Ô|ψa − ψ̃a〉

)
+
∑
a6=a′

〈ψa − ψ̃a|Ô|ψa′ − ψ̃a′〉

(6.16)
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For local operators1 the last two lines does not contribute. The first line, because |ψa − ψ̃a〉 is
only non-zero inside the spheres, while |ψ̃ − ψ̃a〉 is only non-zero outside the spheres. The second
line simply because |ψa − ψ̃a〉 is zero outside the spheres, so two such states centered on different
nuclei have no overlap (provided that the augmentation spheres do not overlap).

Reintroducing the partial waves in the one-center expansions, we see that
val∑
n

fn〈ψa
n|Ô|ψa

n〉 =
val∑
n

fn

∑
i1i2

〈φa
i1P

a
ni1 |Ô|φ

a
i2P

a
ni2〉 =

∑
i1i2

〈φa
i1 |Ô|φ

a
i2〉

val∑
n

fnP
a∗
ni1P

a
ni2 (6.17)

and likewise for the smooth waves.
Introducing the Hermitian one-center density matrix

Da
i1i2 =

∑
n

fnP
a∗
ni1P

a
ni2 =

∑
n

fn〈ψ̃n|p̃a
i1〉〈p̃

a
i2 |ψ̃n〉 (6.18)

We conclude that for any local operator Ô, the expectation value is

〈Ô〉 =
val∑
n

fn〈ψ̃n|Ô|ψ̃n〉+
∑

a

∑
i1i2

(
〈φa

i1 |Ô|φ
a
i2〉 − 〈φ̃

a
i1 |Ô|φ̃

a
i2〉
)
Da

i1i2 +
∑

a

core∑
α

〈φa,core
α |Ô|φa,core

α 〉

(6.19)

6.4 Densities

The electron density is obviously a very important quantity in DFT, as all observables in principle
are calculated as functionals of the density. In reality the kinetic energy is calculated as a functional
of the orbitals, and some specific exchange-correlation functionals also rely on KS-orbitals rather
then the density for their evaluation, but these are still implicit functionals of the density.

To obtain the electron density we need to determine the expectation value of the real-space
projection operator |r〉〈r|

n(r) =
∑

n

fn〈ψn|r〉〈r|ψn〉 =
∑

n

fn|ψn(r)|2 (6.20)

where fn are the occupation numbers.
As the real-space projection operator is obviously a local operator, we can use the results (6.19)

of the previous section, and immediately arrive at

n(r) =
val∑
n

fn|ψ̃n|2 +
∑

a

∑
i1i2

(
φa

i1φ
a
i2 − φ̃a

i1 φ̃
a
i2

)
Da

i1i2 +
∑

a

core∑
α

|φa,core
α |2 (6.21)

To ensure that (6.21) reproduce the correct density even though some of the core states are
not strictly localized within the augmentation spheres, a smooth core density, ñc(r), is usually
constructed, which is identical to the core density outside the augmentation sphere, and a smooth
continuation inside. Thus the density is typically evaluated as

n(r) = ñ(r) +
∑

a

(na(r)− ña(r)) (6.22)

where

ñ(r) =
val∑
n

fn|ψ̃n(r)|2 + ñc(r) (6.23a)

na(r) =
∑
i1i2

Da
i1i2φ

a
i1(r)φ

a
i2(r) + na

c (r) (6.23b)

ña(r) =
∑
i1i2

Da
i1i2 φ̃

a
i1(r)φ̃

a
i2(r) + ña

c (r) (6.23c)

1Local operator bO: An operator which does not correlate separate parts of space, i.e. 〈r| bO|r′〉 = 0 if r 6= r′.
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6.5 Total Energies

The total energy of the electronic system is given by eq. (3.25):

E[n] = Ts[n] + UH [n] + Vext[n] + Exc[n] (6.24)

In this section, the usual energy expression above, is sought re-expressed in terms of the PAW
quantities: the smooth waves and the auxiliary partial waves.

For the local and semi-local functionals, we can utilize (6.19), while the nonlocal parts needs
more careful consideration.

6.5.1 The Semi-local Contributions

The kinetic energy functional Ts =
∑

n fn〈ψn| − 1
2∇

2|ψn〉 is obviously a (semi-) local functional,
so we can apply (6.19) and immediately arrive at:

Ts[{ψn}] =
∑

n

fn〈ψn| − 1
2∇

2|ψn〉

=
val∑
n

fn〈ψ̃n| − 1
2∇

2|ψ̃n〉+
∑

a

∆T a
s [{Da

i1i2}]
(6.25)

where

∆T a
s [{Da

i1i2}] =
∑
i1i2

Da
i1i2

(
〈φa

i1 | −
1
2∇

2|φa
i2〉 − 〈φ̃

a
i1 | −

1
2∇

2|φ̃a
i2〉
)

+
∑

a

core∑
α

〈φa,core
α | − 1

2∇
2|φa,core

α 〉

(6.26)
For LDA and GGA type exchange-correlation functionals, Exc is likewise, per definition, a semi-
local functional, such that it can be expressed as

Exc[n] = Exc[ñ] +
∑

a

(Exc[na]− Exc[ña]) (6.27)

By virtue of (6.23b)-(6.23c) we can consider the atomic corrections as functionals of the density
matrix defined in (6.18), i.e.

Exc[n] = Exc[ñ] +
∑

a

∆Ea
xc[{Da

i1i2}] (6.28)

where
∆Ea

xc[{Da
i1i2}] = Exc[na]− Exc[ña] (6.29)

The case of nonlocal exact-exchange will be discussed in section 6.7.

6.5.2 The Nonlocal Contributions

The Hartree term is both nonlinear and nonlocal, so more care needs to be taken when introducing
the PAW transformation for this expression.

In the following we will assume that there is no ‘true’ external field, such that Vext[n] is only
due to the static nuclei, i.e. it is a sum of the classical interaction of the electron density with the
static ionic potential, and the electrostatic energy of the nuclei.2

We define the total classical electrostatic energy functional as

EC [n] = UH [n] + Vext[n] =
1
2
((n)) + (n|

∑
a Z

a) + 1
2

∑
a6=a′(Z

a|Za′) (6.30)

2The inclusion of an actual external potential is straight forward, and is shown in section G.
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where the notation (f|g) indicates the Coulomb integral

(f |g) =
∫∫

drdr′
f∗(r)g(r′)
|r− r′|

(6.31)

and I have introduced the short hand notation ((f)) = (f |f). In (6.30), Za(r) is the charge density
of the nucleus at atomic site a, which in the classical point approximation is given by

Za(r) = −Zaδ(r−Ra) (6.32)

with Za being the atomic number of the nuclei. As the Hartree energy of a density with non-zero
total charge is numerically inconvenient, we introduce the charge neutral total density

ρ(r) = n(r) +
∑

a

Za(r) (= nelectrons + nnuclei) (6.33)

In terms of this, the coulombic energy of the system can be expressed by

EC [n] = U ′
H [ρ] =

1
2
((n+

∑
a Z

a))′ (6.34)

where the prime indicates that one should remember the self-interaction error of the nuclei in-
troduced in the Hartree energy of the total density. This correction is obviously ill defined, and
different schemes exist for making this correction. As it turns out, this correction is handled very
naturally in the PAW formalism.

For now, we will focus on the term ((ρ)) = ((n+
∑

a Z
a)). If one where to directly include the

expansion of n(r) according to (6.22), one would get:

((n+
∑

a Z
a)) = ((ñ+

∑
a n

a − ña + Za))

= ((ñ)) +
∑
aa′

(na − ña + Za|na′ − ña′ + Za′) + 2
∑

a

(ñ|na − ña + Za)

where in the last expression, the first term is the Hartree energy of the smooth electron density,
which is numerically problematic because of the nonzero total charge (see e.g. section 8.3.1). The
second term contains a double summation over all nuclei, which would scale badly with system size,
and the last term involves integrations of densities represented on incompatible grids (remember
that the one-center densities are represented on radial grids to capture the oscillatory behavior
near the nuclei)3. This is clearly not a feasible procedure. To correct these problem we add and
subtract some atom centered compensation charges Z̃a:

((n+
∑

a Z̃
a +
∑

a

[
Za − Z̃a

]
)) = ((ñ+

∑
a Z̃

a))+
∑

aa′(n
a− ña +Za− Z̃a|na′− ña′ +Za′− Z̃a)

+ 2
∑

a

(ñ+
∑

a′ Z̃
a′ |na − ña + Za − Z̃a)

If we define Z̃a(r) in such a way that na(r) − ña(r) + Za(r) − Z̃a(r) has no multipole moments,
i.e. ∫

drrlYL(r̂−Ra)(na − ña + Za − Z̃a) = 0 (6.35)

for all a, the potentials of these densities are zero outside their respective augmentation spheres
(L = (l,m) is a collective angular- and magnetic quantum number). Exploiting this feature, the
Coulomb integral reduce to

((n+
∑

a Z
a)) = ((ñ+

∑
a Z̃

a)) +
∑

a((na − ña + Za − Z̃a)) + 2
∑

a(ña + Z̃a|na − ña + Za − Z̃a)

= ((ñ+
∑

a Z̃
a)) +

∑
a

(
((na + Za))− ((ña + Z̃a))

)
3One could separate the terms in other ways, but it is impossible to separate the smooth and the localized terms

completely.
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where it has been used that inside the augmentation spheres ñ = ña. In this expression, we have
circumvented all of the previous problems. None of the terms correlates functions on different
grids, there is only a single summation over the atomic sites, and furthermore the only thing that
has to be evaluated in the full space is the Hartree energy of ñ(r) +

∑
a Z̃

a(r) which is charge
neutral (see eq. (6.42)).

Inserting the final expression in (6.30), we see that

EC [n] =
1
2
((ñ+

∑
aZ̃

a)) +
1
2

∑
a

(
((na + Za))′ − ((ña + Z̃a))

)
= UH [ρ̃] +

1
2

∑
a

(
((na)) + 2(na|Za)− ((ña + Z̃a))

) (6.36)

where we have introduced the smooth total density

ρ̃(r) = ñ+
∑

a

Z̃a(r) (6.37)

Note that the problem with the self interaction error of the nuclei could easily be resolved once
it was moved to the atom centered part, as handling charged densities is not a problem on radial
grids.

To obtain an explicit expression for the compensation charges, we make a multipole expansion
of Z̃a(r)

Z̃a =
∑
L

Qa
L g̃a

L(r) (6.38)

where g̃a
L(r) is any smooth function localized within |r−Ra| < ra

c , satisfying∫
drrlYL(r̂−Ra)g̃a

L′(r) = δLL′ (6.39)

Plugging the expansion (6.38) into equations (6.35), we see that the expansion coefficients Qa
L

from must be chosen according to

Qa
L =

∫
drrlYL(r̂) (na(r)− ña(r) + Za(r)) = ∆aδl,0 +

∑
i1i2

∆a
Li1i2D

a
i1i2 (6.40)

where

∆a =
∫
drY00(r̂)[na

c (r)− ña
c (r)−Zaδ(r)] (6.41a)

∆a
Li1i2 =

∫
drrlYL(r̂)[φa

i1(r)φ
a
i2(r)− φ̃a

i1(r)φ̃
a
i2(r)] (6.41b)

and it has been used that the core densities are spherical (we consider only closed shell frozen
cores). This completely defines the compensation charges Z̃a(r).

Note that the special case l = 0 of (6.35), implies that∫
dr
[
na − ña + Za − Z̃a

]
= 0

⇓∫
dr

[
ñ(r) +

∑
a

Z̃a(r)

]
=
∫
dr

[
n(r) +

∑
a

Za(r)

]
m∫

dr ρ̃(r) =
∫
dr ρ(r) = 0 (6.42)
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i.e. that the smooth total density has zero total charge, making the evaluation of the Hartree
energy numerically convenient.

In summary, we conclude that the classical coulomb interaction energy which in the KS for-
malism was given by EC [n] = U ′

H [ρ], in the PAW formalism becomes a pure Hartree energy (no
self-interaction correction) of the smooth total density ρ̃ plus some one-center corrections

EC [n] = UH [ρ̃] +
∑

a

∆Ea
C [{Da

i1i2}] (6.43)

where the corrections

∆Ea
C [{Da

i1i2}] = 1
2 ((na)) + (na|Za)− 1

2 ((ña))− (ña|Z̃a)− 1
2 ((Z̃a))

= 1
2 [((na

c ))− ((ña
c ))]−Za

∫
dr
na

c (r)
r

−
∑
L

Qa
L(ña

c |g̃a
L)

+
∑
i1i2

Da∗
i1i2

[
(φa

i1φ
a
i2 |n

a
c )− (φ̃a

i1 φ̃
a
i2 |ñ

a
c )−Za

∫
dr
φa

i1
(r)φa

i2
(r)

r
−
∑
L

Qa
L(φ̃a

i1 φ̃
a
i2 |g̃

a
L)

]

+
1
2

∑
i1i2i3i4

Da∗
i1i2

[
(φa

i1φ
a
i2 |φ

a
i3φ

a
i4)− (φ̃a

i1 φ̃
a
i2 |φ̃

a
i3 φ̃

a
i4)
]
Da

i3i4 −
1
2

∑
LL′

Qa
LQ

a
L′(g̃a

L|g̃a
L′)

are simple products of system independent tensors with the one-center density matrix Da
i1i2

. Note
that Qa

L by virtue of (6.40) is also a functional of the density matrix.

6.5.3 Summary

Summing up all the energy contributions, we see that the Kohn-Sham total energy

E[n] = Ts[{ψn}] + U ′
H [ρ] + Exc[n]

can be separated into a part calculated on smooth functions, Ẽ, and some atomic corrections,
∆Ea, involving quantities localized around the nuclei only.

E = Ẽ +
∑

a

∆Ea (6.44)

where the smooth part
Ẽ = Ts[{ψ̃n}] + UH [ρ̃] + Exc[ñ] (6.45)

is the usual energy functional, but evaluated on the smooth functions ñ and ρ̃ instead of n and ρ,
and with the soft compensation charges Z̃a instead of the nuclei charges Za(r). The corrections

∆Ea = ∆T a
s + ∆Ea

C + ∆Ea
xc (6.46)

can be expanded in powers of the density matrix according to

∆Ea = Aa +
∑
i1i2

Ba
i1i2D

a
i1i2 +

∑
i1i2i3i4

Da∗
i1i2C

a
i1i2i3i4D

a
i3i4 + ∆Ea

xc({Da
i1i2}) (6.47)

where Aa, Ba
i1i2

, and Ca
i1i2i3i4

are system independent tensors that can be pre-calculated and stored
for each specie in the periodic table of elements. Expanded in powers of ∆a and ∆a

Li1i2
from the

expansion coefficients of Z̃a, the tensors A, B, and C are

Aa = F a + ∆aKa
00 + (∆a)2Na

00,00 (6.48a)

Ba
i1i2 = Ia

i1i2 + ∆aMa
i1i2,00 +

∑
L

∆a
Li1i2

(
Ka

L + 2∆aNa
00,00

)
(6.48b)

Ca
i1i2i3i4 = Ja

i1i2i3i4 +
1
2

∑
L

(
Ma

i1i2L∆a
Li3i4 +Ma

i3i4L∆a
Li1i2

)
+
∑
LL′

∆a
Li1i2N

a
LL′∆a

L′i3i4 (6.48c)
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where the six tensors F , K, N , I, M and J are given by

F a =
core∑
α

〈φa,core
α | − 1

2∇
2|φa,core

α 〉+ 1
2 [((na

c ))− ((ña
c ))]−Za

∫
dr
na

c (r)
r

Ia
i1i2 = 〈φa

i1 | −
1
2∇

2|φa
i2〉 − 〈φ̃

a
i1 | −

1
2∇

2|φ̃a
i2〉+ (φa

i1φ
a
i2 |n

a
c )− (φ̃a

i1 φ̃
a
i2 |ñ

a
c )−Za

∫
dr
φa

i1
(r)φa

i2
(r)

r

Ka
L = −(ña

c |g̃a
L)

Na
LL′ = −1

2
(g̃a

L|g̃a
L′)

Ma
i1i2L = −(φ̃a

i1 φ̃
a
i2 |g̃

a
L)

Ja
i1i2i3i4 =

1
2

[
(φa

i1φ
a
i2 |φ

a
i3φ

a
i4)− (φ̃a

i1 φ̃
a
i2 |φ̃

a
i3 φ̃

a
i4)
]

Note that all integrals can be limited to the inside of the augmentation sphere. For example
(φa

i1
φa

i2
|na

c ) has contributions outside the augmentation sphere, but these are exactly canceled
by the contributions outside the spheres of (φ̃a

i1
φ̃a

i2
|ña

c ), in which region the two expressions are
identical.

The Ca
i1i2i3i4

tensor has been written in a symmetric form, such that it is invariant under the
following symmetry operations:

i1 ↔ i2 i3 ↔ i4 i1i2 ↔ i3i4 (6.50)

To arrive at the symmetric form, it has been used that∑
i1i2i3i4L

Da∗
i1i2M

a
i1i2L∆a

Li3i4D
a
i3i4 =

1
2

∑
i1i2i3i4L

(
Ma

i1i2L∆a
Li3i4 +Ma

i3i4L∆a
Li1i2

)
Da

i3i4

due to the symmetry of M and ∆, and that the density matrix is hermitian.
Both the Hamiltonian and the forces can be derived from the total energy functional (6.44).

The Hamiltonian will be derived in the following section. For a derivation of the force in PAW,
see appendix F.

6.6 The Transformed Kohn-Sham Equation

The variational quantity in the PAW formalism is the smooth wave function ψ̃n. From this, all
other quantities, such as the density matrix, the soft compensation charges, the transformation
operator, etc. are determined by various projections of ψ̃n onto the projector functions, and
expansions in our chosen basis functions, the partial and smooth partial waves. To obtain the
smooth wave functions, we need to solve the eigenvalue equation

̂̃
Hψ̃n(r) = εnŜψ̃n(r) (6.51)

where the overlap operator Ŝ = T̂ †T̂ and ̂̃H = T̂ †ĤT̂ is the transformed Hamiltonian.

6.6.1 Orthogonality

In the original form, the eigen states of the KS equation where orthogonal, i.e. 〈ψn|ψm〉 = δnm

while in the transformed version
〈ψ̃n|T̂ †T̂ |ψ̃m〉 = δnm (6.52)

i.e. the smooth wave function are only orthogonal with respect to the weight Ŝ.
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The explicit form of the overlap operator is

Ŝ = T̂ †T̂

=
(
1 +

∑
a T̂ a

)† (
1 +

∑
a T̂ a

)
= 1 +

∑
a

(
T̂ a† + T̂ a + T̂ a†T̂ a

)
= 1 +

∑
a

[∑
i

|p̃a
i 〉(〈φa

i | − 〈φ̃a
i |)
∑

j

|φ̃a
j 〉〈p̃a

j |+
∑

j

|φ̃a
j 〉〈p̃a

j |
∑

i

(|φa
i 〉 − |φ̃a

i 〉)〈p̃a
i |

+
∑

i

|p̃a
i 〉(〈φa

i | − 〈φ̃a
i |)
∑

j

(|φa
j 〉 − |φ̃a

j 〉)〈p̃a
j |
]

= 1 +
∑

a

∑
ij

|p̃a
i 〉(〈φa

i |φa
j 〉 − 〈φ̃a

i |φ̃a
j 〉)〈p̃a

j |

= 1 +
∑

a

∑
ij

|p̃a
i 〉
√

4π∆a
00,ij〈p̃a

j |

(6.53)

The orthogonality condition (6.52) must be kept in mind when applying numerical schemes for
solving (6.51). For example plane waves are no longer orthogonal, in the sense that 〈G|Ŝ|G′〉 6=
δG,G′ .

6.6.2 The Hamiltonian

To determine the transformed Hamiltonian, one could apply the transformation ̂̃
H = T̂ †ĤT̂

directly, which would be straight forward for the local parts of Ĥ, but to take advantage of the
trick used to determine the total energy of the nonlocal term (EC [n]), we make use of the relation

δE

δψ̃∗n(r)
= fn

̂̃
Hψ̃n(r) (6.54)

Using this, we get

δE

δψ̃∗n(r)
=

δ

δψ̃∗n(r)

[
Ts[{ψ̃n}] + Exc[ñ] + UH [ρ̃] + ∆Ea[{Da

i1i2}]
]

=
δTs[{ψ̃n}]
δψ̃∗n(r)

+
∫
dr′
[
δExc[ñ]
δñ(r′)

+
δUH [ρ̃]
δñ(r′)

]
δñ(r′)
δψ̃∗n(r)

+
∑

a

∑
i1i2

[∫
dr′

δUH [ñ+
∑

a Z̃
a]

δZ̃a(r′)
δZ̃a(r′)
δDa

i1i2

+
δ∆Ea

δDa
i1i2

]
δDa

i1i2

δψ̃∗n(r)

= fn(− 1
2∇

2)ψn(r)

+
∫
dr′ [vxc[ñ](r′) + uH [ρ̃](r′)] fnδ(r− r′)ψ̃n(r′)

+
∑

a

∑
i1i2

[∫
dr′uH [ñ+

∑
a Z̃

a](r′)
∑

L ∆a
Li1i2

g̃a
L(r′) + δ∆Ea

δDa
i1i2

]
fnp̃

a
i1(r)P

a
ni2

where vxc[n](r) = δExc[n]
δn(r) is the usual local (LDA) or semilocal (GGA) exchange correlation po-

tential, and uH [n](r) = δUH [n]
δn(r) =

∫
dr′ n(r′)

|r−r′| is the usual Hartree potential.
From these results, we can write down the transformed Hamiltonian aŝ̃

H = − 1
2∇

2 + uH [ρ̃] + vxc[ñ] +
∑

a

∑
i1i2

|p̃a
i1〉∆H

a
i1i2〈p̃

a
i2 | (6.55)
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where the nonlocal part of the Hamiltonian is given in terms of the tensor

∆Ha
i1i2 =

∑
L

∆a
Li1i2

∫
druH [ρ̃](r)g̃a

L(r) +
δ∆Ea

δDa
i1i2

=
∑
L

∆a
Li1i2

∫
druH [ρ̃](r)g̃a

L(r) +Ba
i1i2 + 2

∑
i3i4

Ca
i1i2i3i4D

a
i3i4 +

δ∆Exc

δDa
i1i2

(6.56)

Note that to justify taking the derivative with respect to D only, and not its complex conjugate,
the symmetry properties (6.50) has been used to get Da∗

i1i2
Ca

i1i2i3i4
Da

i3i4
= Da

i1i2
Ca

i1i2i3i4
Da

i3i4
.

6.7 Exact Exchange in PAW

In this section, an expression will be derived for the exact exchange total energy and non-local
potential in the PAW formalism.

For exchange, the spin label can no longer be ignored, so in this section spin has been included
as prescribed in section 2.4.

6.7.1 Exact Exchange Energy

The exact exchange energy is given by:

Exx = −1
2

occ∑
nn′

δσn,σn′

∫
drdr′

ψn(r)ψ∗n′(r)ψ∗n(r′)ψn′(r′)
|r− r′|

= −1
2

∑
nn′

fnfn′δσn,σn′

∫
drdr′

n∗nn′(r)nnn′(r′)
|r− r′|

= −1
2

∑
nn′

fnfn′δσn,σn′ ((nnn′))

(6.57)

where
nnn′(r) = ψ∗n(r)ψn′(r) (6.58)

Note that these exchange ‘densities’ doesn’t correspond to any physical quantity, and that they
are complex in general.

Remembering that for the valence states

ψn = ψ̃n +
∑

a

(
ψa

n − ψ̃a
n

)
while for the core states

ψc
n = φa,core

α

the double summation over all occupied states in (6.57) is going to involve terms which are products
of valence states only, some which are products of only core states, and some with mixed products,
i.e.

Exx = −1
2

occ∑
nn′

δσn,σn′ ((nnn′))

= −1
2

val∑
n

val∑
n′

fnfn′δσn,σn′ ((nnn′))−
val∑
n

core∑
n′

fnδσn,σn′ ((nnn′))− 1
2

core∑
n

core∑
n′

δσn,σn′ ((nnn′))

= −1
2

val∑
n

val∑
n′

fnfn′δσn,σn′ ((nnn′))− 1
2

val∑
n

core∑
n′

fn((nnn′))− 1
4

core∑
n

core∑
n′

((nnn′))

(6.59)

Here it has been assumed that the core states form closed shells.
In the following, the three contributions will be treated individually.
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The Valence-Valence Interaction

In this section we treat the valence-valence contribution

Ev-v
xx = −1

2

val∑
nn′

fnfn′δσn,σn′ ((nnn′)) (6.60)

to the exchange energy only.
When both n and n′ are valence states, the exchange density reduce to

nnn′ =

(
ψ̃n +

∑
a

(
ψa

n − ψ̃a
n

))∗(
ψ̃n′ +

∑
a

(
ψa

n′ − ψ̃a
n′

))
= ψ̃∗nψ̃n′ +

∑
a

(
ψa

n − ψ̃a
n

)∗∑
a

(
ψa

n′ − ψ̃a
n′

)
+ ψ̃∗n

∑
a

(
ψa

n′ − ψ̃a
n′

)
+ ψ̃n′

∑
a

(
ψa

n − ψ̃a
n

)∗
= ψ̃∗nψ̃n′ +

∑
a

(
ψa∗

n ψa
n′ − ψ̃a∗

n ψ̃a
n′

)
= ñnn′ +

∑
a

(
na

nn′ − ña
nn′

)
where ñnn′ = ψ̃∗nψ̃n′ , na

nn′ = ψa∗
n ψa

n′ , and ña
nn′ = ψ̃a∗

n ψ̃a
n′ .

To avoid interactions between one-center exchange densities (na
nn′− ña

nn′) centered on different
atoms, in the expression (6.60), we add and subtract the atom-centered compensation charge
Z̃a

nn′(r)

nnn′ = ñnn′ +
∑

a

Z̃a
nn′ +

∑
a

(
na

nn′ − ña
nn′ − Z̃a

nn′

)
(6.61)

where the compensation charges are expansions of the form

Z̃a
nn′(r) =

∑
L

Qa
Lnn′ g̃a

L(r)

The expansion functions, g̃a
L, are the same as in (6.38), and the expansion coefficients of the

compensation charges, Qa
Lnn′ , are chosen such that na

nn′ − ña
nn′ − Z̃a

nn′ in (6.61) has no multipole
moments, i.e. ∫

drrl
[
na

nn′(r)− ña
nn′(r)− Z̃a

nn′(r)
]
YL(r̂) = 0 (6.62)

for all L. Inserting the expansions of the densities

na
nn′(r) =

val∑
i1i2

φa
i1(r)φ

a
i2(r)P

a∗
ni1P

a
n′i2 and ña

nn′(r) =
val∑
i1i2

φ̃a
i1(r)φ̃

a
i2(r)P

a∗
ni1P

a
n′i2 (6.63)

we see that∫
drYL(r̂)rl

[
val∑
i1i2

(
φa

i1(r)φ
a
i2(r)− φ̃a

i1(r)φ̃
a
i2(r)

)
P a∗

ni1P
a
n′i2 −

∑
L′

Qa
L′nn′ g̃a

L′(r)

]
= 0

I.e. the expansion coefficients of the compensation charges must be chosen as

Qa
Lnn′ =

val∑
i1i2

∆a
Li1i2P

a∗
ni1P

a
n′i2 (6.64)

where the system independent tensors ∆a
Li1i2

are the same as those of equation (6.41b).
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Inserting the exchange density (6.61) in the energy expression (6.60), we get (dropping the
state labels for brevity)

((n)) = ((ñ+
∑

a

Z̃a +
∑

a

(na − ña − Z̃a))

= ((ñ+
∑

a

Z̃a)) + 2 Re(ñ+
∑

a

Z̃a|
∑

a

na − ña − Z̃a) + ((
∑

a

na − ña − Z̃a))
(6.65)

using that per construction, the potential of na
nn′(r′)− ña

nn′(r′)− Z̃a
nn′(r′) is zero outside the aug-

mentation sphere (as the density is localized within these spheres, and has no multipole moments),
and that inside any such ñnn′ = ña

nn′ , this can be reduced to:

((n)) = ((ñ+
∑

a

Z̃a)) + 2 Re
∑

a

(ña + Z̃a|na − ña − Z̃a)a +
∑

a

((na − ña − Z̃a))a

= ((ñ+
∑

a

Z̃a)) + Re
∑

a

(na + ña + Z̃a|na − ña − Z̃a)

= ((ñ+
∑

a

Z̃a)) +
∑

a

{
((na))− ((ña + Z̃a))

} (6.66)

Note that the special case l = 0 of (6.62), implies that∫
dr
[
na

nn′ − ña
nn′ − Z̃a

nn′

]
= 0

⇓∫
dr

[
ñnn′ +

∑
a

Z̃nn′

]
=
∫
dr nnn′ = δnn′

(6.67)

as the true exchange densities, nnn′ , formed by the full all-electron KS wave functions, are or-
thonormal. This implies that that the argument of the first Coulomb integral in eq. (6.66) has a
nonzero total charge (= 1), for n = n′. This causes some problems for the numerical procedures
for evaluating such integrals, see section 8.3.1 for a discussion, and suggested solutions to this
problem.

Inspired by (6.66), we now decompose the valence-valence contribution to the exchange energy,
in a soft exchange contribution and an atomic correction

Ev-v
xx = Ẽxx +

∑
a

∆Ea,v-v
xx (6.68)

where the soft contribution Ẽxx is

Ẽxx ≡ −1
2

val∑
nn′

fnfn′δσn,σn′ ((ñnn′ +
∑

a

Z̃a
nn′)) (6.69)

and the PAW atomic correction, ∆Ea,v-v
xx is

∆Ea,v-v
xx = −1

2

val∑
nn′

fnfn′δσn,σn′

{
((na

nn′))− ((ña
nn′ + Z̃a

nn′))
}

(6.70)

Inserting the relations (6.63) and (6.64) and preceding in much the same way as for the Hartree
energy, one eventually end up with the expression

∆Ea,v-v
xx = −

val∑
nn′

val∑
i1i2i3i4

fnfn′δσn,σn′P
a∗
ni1P

a
n′i2P

a
ni3P

a∗
n′i4C

a
i1i2i3i4

= −
∑

σ

val∑
i1i2i3i4

Da∗
i1i2(σ)Ca

i1i3i2i4D
a
i3i4(σ)

(6.71)
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where the system independent tensor C is identical to the tensor Ca
i1i2i3i4

used to evaluate the
total energy, eq. (6.48c), and a spin specific density matrix has been introduced by

Da
i1i2(σ) =

∑
n

fnδσn,σ〈ψ̃n|p̃a
i1〉〈p̃

a
i2 |ψ̃n〉 (6.72)

Note that the order of the two indices i2 and i3 of C in eq. (6.71) are exchanged, as compared to
the equivalent expression for the Hartree energy.

The Valence-Core Interaction

Taking n to be a valence state and n′ a core state, the exchange density becomes:

nnn′ =
(
ψ̃n +

∑
a

(ψa
n − ψ̃a

n)
)∗
ψc

n′ = ψa∗
n φa,core

α =
val∑
i

φa
i P

a∗
ni φ

a,core
α (6.73)

where it has been used that the core states φa,core
α are localized within the augmentation spheres,

and that inside any such, the smooth all-electron wave function ψ̃n is identical to its one-center
expansion, ψ̃a∗

n . The index n′ = {a, α} on the core states is a joint index referring to both a
specific atom, a, and an atomic core state, α.

From this we see that:

Ev-c
xx = −1

2

val∑
n

core∑
n′

fn(nnn′ |nnn′)

= −1
2

val∑
n

∑
a

core∑
α

val∑
i1i2

fn(φa
i1P

a∗
ni1 φ

a,core
α |φa

i2P
a∗
ni2 φ

a,core
α )

= −
∑

a

val∑
i1i2

Da
i1i2 X

a
i1i2

(6.74)

where Da
i1i2

is the hermitian density matrix of equation (6.18) and the system independent hermi-
tian tensor Xa

i1i2
is given by:

Xa
i1i2 =

1
2

core∑
α

∫∫
drdr′φa

i1(r)φ
a,core
α (r)

φa
i2

(r′)φa,core
α (r′)

|r− r′|
(6.75)

The Core-Core Interaction

The core-core contribution to the exact exchange energy is simply given by:

Ec-c
xx = −1

4

core∑
nn′

((ψc∗
n ψ

c
n′)) = −1

4

∑
a

core∑
α,α′

((φa,core
α φa,core

α′ )) (6.76)

Where we have again used the assumption that the core states of different atoms do not overlap.
That the core-core contribution to the exchange energy only includes exchange between orbitals on
the same atom implies that the Ec-c

xx energy contribution only appears as a reference energy, and
is as such canceled when calculating energy differences. If total energies are deemed interesting,
one can precalculate and tabulate the exchange energy of the core states for each type of atom,
and add this reference energy to the total (exchange) energy at the end of calculations.

Summary

Summarizing, the exact exchange energy is in the PAW formalism given by

Exx = Ẽxx +
∑

a

∆Ea
xx
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where ∆Ea
xx = ∆Ea,v-v

xx + Ea,v-c
xx + Ea,c-c

xx and

Ẽxx = −1
2

val∑
nn′

fnfn′δσn,σn′ ((ψ̃∗nψ̃n′ +
∑

a

Z̃a
nn′)) (Soft valence-valence interaction)

∆Ea,v-v
xx = −

∑
σ

val∑
i1i2i3i4

Da∗
i1i3(σ)Ca

i1i2i3i4D
a
i2i4(σ) (Atomic valence-valence correction)

Ea,v-c
xx = −

val∑
i1i2

Da
i1i2X

a
i1i2 (Atomic valence-core interaction)

Ea,c-c
xx = −1

4

core∑
α1α2

((φa,core
α1

φa,core
α2

)) (Atomic core-core interaction)

6.7.2 The Exact Exchange Potential

To determine the expression for the non-local potential of exact exchange in the PAW formalism,
while conserving the tricks used to transform the total energy, we use the same procedure as for
determining the transformed Hamiltonian of the KS problem, i.e. using

fnv̂xxψ̃n(r) =
δExx

δψ̃∗n(r)

where

Exx = −1
2

val∑
nn′

fnfn′δσn,σn′ ((ñnn′ +
∑

a

Z̃a
nn′))

+
∑

a

[
−
∑

σ

val∑
i1i2i3i4

Da∗
i1i2(σ)Ca

i1i3i2i4D
a
i3i4(σ)−

val∑
i1i2

Da
i1i2X

a
i1i2 + Ea,c-c

xx

]

with the smooth compensation charges Z̃a
nn′(r) and the exchange densities ñnn′(r) given by

Z̃a
nn′(r) =

∑
L

val∑
i1i2

∆a
Li1i2P

a∗
ni1P

a
n′i2 g̃

a
L(r)

ñnn′(r) = ψ̃∗n(r)ψ̃n′(r)

The potential corresponding to this energy is found from

fnv̂xxψ̃n(r) =
δẼxx

δψ̃∗n(r)
+
∑

a

δ∆Ea
xx

δψ̃∗n(r)

=
∑
pq

∫
dr′
[

δẼxx

δñpq(r′)
δñpq(r′)
δψ̃∗n(r)

+
δẼxx

δñ∗pq(r′)
δñ∗pq(r

′)

δψ̃∗n(r)
+
∑

a

δẼxx

δZ̃a
pq(r′)

δZ̃a
pq(r

′)

δψ̃∗n(r)
+

δẼxx

δZ̃a∗
pq (r′)

δZ̃a∗
pq (r′)

δψ̃∗n(r)

]

+
∑

a

∑
i1i2

∑
σ

[
δ∆Ea

xx

Da
i1i2

(σ)
Da

i1i2
(σ)

δψ̃∗n(r)
+

δ∆Ea
xx

Da∗
i1i2

(σ)
Da∗

i1i2
(σ)

δψ̃∗n(r)

]
=
∑
pq

∫
dr′
[
fpfqδσp,σq ṽpq(r′)δpnδ(r− r′)ψ̃q(r′)

+
∑

a

fpfqδσp,σq
ṽpq(r′)

∑
L

g̃a
L(r′)

∑
i1i2

δpn∆a
Li1i2 p̃

a
i1(r)P

a
qi2

]
+
∑

a

∑
i1i2

[
−Xa

i1i2 −
∑
i3i4

(
Da∗

i3i4C
a
i3i1i4i2 + Ca

i1i3i2i4D
a
i3i4

)]
p̃a

i1(r)P
a
ni2
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where

ṽnn′(r) = −
∫
dr′

(ñnn′(r′) +
∑

a Z̃
a
nn′(r′))∗

|r− r′|
(6.77)

From this, we see that the exchange potential is a nonlocal operator of the form

v̂xx|ψ̃n〉 =
∑
n′

fn′δσn,σn′

[
ṽnn′ +

∑
a

∑
i1i2

|p̃a
i1〉v

a
nn′,i1i2〈p̃

a
i2 |

]
|ψ̃n′〉

−
∑

a

∑
i1i2

|p̃a
i1〉

[
Xa

i1i2 + 2
∑
i3i4

Ca
i1i3i2i4D

a
i3i4

]
〈p̃a

i2 |ψ̃n〉
(6.78)

where the tensor
va

nn′,i1i2 =
∑
L

∆a
Li1i2

∫
drg̃a

L(r)ṽnn′(r) (6.79)

To get the factor of two in front of C the symmetry properties (6.50) has been used.

6.8 Summary

A hybrid HF-KS calculation in the PAW formalism, including a fraction λ of exact exchange, is
performed by redefining the tensors A, B, and C according to

Aa → Aa + λEa,c-c
xx

Ba
i1i2 → Ba

i1i2 − λXa
i1i2

Ca
i1i2i3i4 → Ca

i1i2i3i4 − λCa
i1i3i2i4

and multiplying all terms of A, B, and C involving the local exchange potential by a factor 1− λ.
The PAW HF-KS equation to be solved is

̂̃
H|ψ̃n〉 = εnŜ|ψ̃n〉 (6.80)

with Ŝ given by (6.53), and ̂̃H by

̂̃
H|ψ̃n〉 =

[
− 1

2∇
2 + uH [ρ̃](r) + (1− λ)vx[ñ](r) + vc[ñ](r)

]
|ψ̃n〉+

∑
a

∑
i1i2

|p̃a
i1〉∆H

a
i1i2〈p̃

a
i2 |ψ̃n〉

+ λ
∑
n′

fn′δσn,σn′

[
ṽnn′(r) +

∑
a

∑
i1i2

|p̃a
i1〉v

a
nn′,i1i2〈p̃

a
i2 |

]
|ψ̃n′〉

(6.81)

where

∆Ha
i1i2 =

∑
L

∆a
Li1i2

∫
druH [ρ̃](r)g̃a

L(r)+Ba
i1i2+2

∑
i3i4

Ca
i1i2i3i4D

a
i3i4+(1−λ)

δ∆Ex

δDa
i1i2

+
δ∆Ec

δDa
i1i2

(6.82)

with ṽnn′ given by (6.77) and va
nn′,i1i2

by (6.79).
The total energy can then be evaluated by

E = Ts[{ψ̃n}] + UH [ρ̃] + λExx[{ñnn′ +
∑

a Z̃
a
nn′}] + (1− λ)Ex[ñ] + Ec[ñ] +

∑
a

∆Ea (6.83)

with
Exx = 1/2

∑
nn′

δσn,σn′

∫
drṽnn′(r)(ñnn′(r) +

∑
a Z̃

a
nn′(r))
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and ∆Ea given by

∆Ea = Aa +
∑
i1i2

Ba
i1i2D

a
i1i2 +

∑
i1i2i3i4

Da∗
i1i2C

a
i1i2i3i4D

a
i3i4 + (1− λ)∆Ea

x({Da
i1i2}) + ∆Ea

c ({Da
i1i2})

(6.84)
with the redefined tensors A, B, and C.

Having solved the eigenvalue problem (6.80), the eigenvalues are known. This can be used to
determine, for example, the kinetic energy of the pseudo wave functions, Ts[ñ], without doing the
explicit (and computationally costly) computation. This can be seen by operating with

∑
n fn〈ψ̃n|

on eq. (6.81) to get:

Ts[{ψ̃n}] =
∑

n

fnεn −
∫
dr[ñ(r)− ñc(r)] [uH [ρ̃](r) + vxc[ñ](r)]−

∑
a

∑
i1i2

∆Ha
i1i2D

a
i1i2 (6.85)

When including Fock exchange, one needs to add the additional term

∑
nn′

fn

[
fn′δσn,σn′

∫
drṽnn′(r)ñnn′(r)−

∑
a

∑
i1i2

P a
ni1P

a
n′i2v

a
nn′,i1i2

]
(6.86)

to the right hand side.



Chapter 7

Implementing PAW

For an implementation of PAW, one must specify a large number of data for each chemical element.
This constitutes a data set which uniquely determines how the on-site PAW transformation works,
at the site of the specific atom. For the generation of such data sets, one needs an atomic DFT
program, with which basis sets can be generated. How to perform DFT calculations efficiently on
an isolated atom will be discussed in the first section of this chapter, and the actual choice of data
set parameters will be discussed in the second. The atomic DFT program plays the additional role
of a small test program, against which implementations in the full PAW program can be tested.

7.1 Atoms

If we consider the Kohn-Sham equation for an isolated atom, (described by a non spin-dependent
Hamiltonian), it is well known that the eigenstates can be represented by the product

φiσi
(rσ) = Rj(r)YL(r̂)χσi

(σ) (7.1)

where Rj are real radial function, and YL are the (complex valued) spherical harmonics. i =
(n, l,m), j = (n, l), and L = (l,m).

Assuming identical filling of all atomic orbitals, i.e. fiσ = fj , the density becomes

n(r) =
∑

i

∑
σi

fj |φiσi(rσ)|2 =
∑

j

2
2l + 1

4π
fj |Rj(r)|2 (7.2)

where the first factor of 2 comes from the sum over spin, and the second factor from the sum over
the magnetic quantum number using that

∑
m

|Ylm|2 =
2l + 1

4π
(7.3)

The identical filling of degenerate states is exact for closed shell systems, and corresponds to a
spherical averaging of the density for open shell systems.

Determining potentials in a spherical coordinate system is usually done by exploiting the
expansion of the Coulomb kernel

1
|r− r′|

=
∑
L

4π
2l + 1

rl
<

rl+1
>

Y ∗
L (r̂)YL(r̂′) (7.4)

with r< = min(r, r′) and r> = max(r, r′). Using this it is seen that for any density with a known
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angular dependence, e.g. the density R(r)YL(r̂), the potential can be determined by

v[R(r)YL(r̂)](r) =
∫
dr′

R(r′)YL(r̂′)
|r− r′|

=
4π

2l + 1
YL(r̂)

∫ ∞

0

r′2dr′R(r′)
rl
<

rl+1
>

=
4π

2l + 1
YL(r̂)

[∫ r

0

dr′R(r′)r′
(r′
r

)l+1

+
∫ ∞

r

dr′R(r′)r′
( r
r′

)l
] (7.5)

if the angular dependence is not a spherical harmonic, one can always do a multipole expansion
as described in section D.2, and use the above expression on the individual terms.

In the case of a radial density n(r) = n(r), the Hartree potential becomes

uH(r) =
4π
r

∫ r

0

dr′n(r′)r′2 + 4π
∫ ∞

r

dr′n(r′)r′ (7.6)

A purely radial dependent density also implies that the xc-potential is a radial function. Using
this, the entire KS equation can be reduced to a 1D problem in r, while the angular part is treated
analytically.

7.1.1 The Radial Kohn-Sham Equation

For a spherical KS potential, and using that YL are eigenstates of the Laplacian, as described
in appendix D.3, the KS equation can be reduced to the simpler one-dimensional second order
eigenvalue problem [

−1
2
d2

dr2
− 1
r

d

dr
+
l(l + 1)

2r2
+ vs(r)

]
Rj(r) = εjRj(r) (7.7)

If we introduce the radial wave function uj(r) defined by

rRj(r) = uj(r) (7.8)

the KS equation can be written as

u′′j (r) +
(

2εj − 2vs(r)−
l(l + 1)
r2

)
uj(r) = 0 (7.9)

which is easily integrated using standard techniques. See e.g. [1, chapter 6].

7.1.2 Exact Exchange

The exact exchange energy for the radial problem is

Ex = −1
2

∑
i1i2

fi1fi2δσi1 ,σi2

∫∫
drdr′

Rj1(r)Y
∗
L1

(r̂)Rj2(r)YL2(r̂)Rj2(r
′)Y ∗

L2
(r̂′)Rj1(r

′)YL1(r̂
′)

|r− r′|

= −1
4

∑
i1i2

fj1fj2

∑
L

4π
2l + 1

|GL
L1L2

|2
∫∫

drdr′
rl
<

rl+1
>

uj1(r)uj2(r)uj2(r
′)uj1(r

′)

= −1
4

∑
j1j2

fj1fj2

∑
l

4π
2l + 1

 ∑
m

m1m2

|GL
L1L2

|2

∫∫ drdr′
rl
<

rl+1
>

uj1(r)uj2(r)uj2(r
′)uj1(r

′)

(7.10)

where GL
L1L2

=
∫
dr̂YL(r̂)YL1(r̂)Y

∗
L2

(r̂) are the Gaunt coefficients [65].
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The Fock exchange potential

v̂NL
x φi1(r) = −

∑
i2

fi2δσi1 ,σi2
φi2(r)

∫
dr′

φi2(r
′)φi1(r

′)
|r− r′|

is reduced to

v̂NL
x Rj1(r)YL1(r̂) = − 1

2

∑
i2

fj2Rj2(r)YL2(r̂)
∫
dr′

Rj2(r
′)Y ∗

L2
(r̂′)Rj1(r

′)YL1(r̂
′)

|r− r′|

= − 1
2

∑
j2

fj2

uj2(r)
r

∑
l

4π
2l + 1

(∑
mm2

GL
L1L2

YL(r̂)YL2(r̂)

)∫
dr′

rl
<

rl+1
>

uj2(r
′)uj1(r

′)

=
YL1(r̂)

2r(2l1 + 1)

∑
j2

fj2uj2(r)
∑

l

4π
2l + 1

 ∑
m

m1m2

|GL
L1L2

|2

∫ dr′
rl
<

rl+1
>

uj2(r
′)uj1(r

′)

(7.11)

From which the radial potential

wj1j2(r) =
−1

2(2l1 + 1)(2l2 + 1)

∑
l

4π
2l + 1

 ∑
m

m1m2

|GL
L1L2

|2

∫ dr′
rl
<

rl+1
>

uj2(r
′)uj1(r

′) (7.12)

can be defined, in terms of which the radial non-local exchange operator can be written as

v̂NL
x uj1(r) =

∑
j2

fj2(2l2 + 1)uj2(r)wj1j2(r) (7.13)

This is the potential that should be included in the radial KS equation. In terms of this, the
exchange energy becomes

Ex =
1
2

∑
j1

fj1(2l1+1)
∫
druj1(r)v̂xuj1(r) =

1
2

∑
j1j2

fj1fj2(2l1+1)(2l2+1)
∫
druj1(r)wj1j2(r)uj2(r)

(7.14)

7.2 The Atomic Data Set of PAW

The very large degree of freedom when choosing the functions defining the PAW transformation
means that the choice varies a great deal between different implementations. In any actual im-
plementation expansions are obviously finite, and many numerical considerations must be made
when choosing these basis sets, to ensure fast and reliable convergence. This section provides an
overview of the information needed for uniquely defining the PAW transformation, and the level
of freedom when choosing the parameters.

The Partial Waves

The basis functions, φa
i , for the expansion of |ψn〉 should be chosen to ensure a fast convergence

to the KS wave function. For this reason we choose the partial waves as the eigenstates of the
Schrödinger equation for the isolated spin-saturated atoms. Thus the index i is a combination of
main-, angular-, and magnetic quantum number, (n, l,m). And the explicit form is

φa
i (r) = φa

nl(r)Ylm(r̂)

where φa
nl(r) are the solutions of the radial KS Schrödinger equation (7.7), and Ylm are the spherical

harmonics. For convenience we choose φa
i (r) to be real, i.e. we use the real spherical harmonics of



58 7. Implementing PAW

appendix D.3. This choice of partial waves implies that the smooth partial waves and the smooth
projector functions can also be chosen real, and as products of some radial functions and the same
real spherical harmonic.

Note that including unbound states of the radial KS equation in the partial waves is not a
problem, as the diverging tail is exactly canceled by the smooth partial waves. In practice we only
integrate the KS equation outward from the origin to the cutoff radius for unbound states, thus
making the energies free parameters. In principle the same could be done for the bound states,
but in GPAW, the energies of bound states are fixed by making the inward integration for these
states and doing the usual matching (see e.g. [1, chapter 6]), i.e. the energies are chosen as the
eigenenergies of the system.

The Smooth Partial Waves

The smooth partial waves ψ̃a
i (r) are per construction identical to the partial waves outside the aug-

mentation sphere. Inside the spheres, we can choose them as any smooth continuation. Presently
GPAW uses simple 6’th order polynomials of even powers only (as odd powers in r results in a
kink in the functions at the origin, i.e. that the first derivatives are not defined at this point),
where the coefficients are used to match the partial waves smoothly at r = rc. Other codes uses
Bessel functions [58] or Gaussians.

The Smooth Projector Functions

The smooth projector functions are a bit more tricky. Making them orthonormal to φ̃a
i (r) is a

simple task of applying the usual Gram-Smith procedure. This is the only formal requirement, but
in any actual implementation all expansions are necessarily finite, and we therefore want them to
converge as fast as possible, so only a few terms needs to be evaluated.

A popular choice is to determine the smooth projector functions according to

|p̃a
i 〉 =

(
− 1

2∇
2 + ṽs − εi

)
|φ̃a

i 〉 (7.15)

or equivalently

p̃a
j (r) =

[
−1

2
d2

dr2
− 1
r

d

dr
+
l(l + 1)

2r2
+ ṽs(r)− εj

]
φ̃a

j (r) (7.16)

where ṽs(r) is the smooth KS potential uH [ρ̃](r)+vxc[ñ](r). And then enforce the complementary
orthogonality condition 〈p̃a

j |φ̃a
j′〉 = δj,j′ inside the augmentation sphere, by a standard Gram-

Schmidt procedure [32]. Using this procedure ensures that the reference atom is described correctly
despite the finite number of projectors.

The Smooth Compensation Charge Expansion Functions

The smooth compensation charges g̃a
L(r), are products of spherical harmonics, and radial functions

g̃a
l (r) satisfying that ∫

drrlYL(r̂)g̃a
L′(r) = δLL′ (7.17)

In GPAW the radial functions are chosen as generalized Gaussian according to (here shown for
Ra = 0):

g̃a
L(r) = g̃a

l (r)YL(r̂) , g̃a
l (r) =

1√
4π

l!
(2l + 1)!

(4αa)l+3/2rle−αar2
(7.18)

where the atom-dependent decay factor α is chosen such that the charges are localized within the
augmentation sphere.

With this choice of compensation charges, the tensors Na
L1L2

and the potential part of the
Ma

i1i2L tensors can be evaluated analytically, see [61].
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The Core- and Smooth Core Densities

The core density follows directly from the all electron partial waves by

nc(r) =
core∑

i

|φi(r)|2 =
core∑

j

2(2l + 1)|φj(r)|2/4π (7.19)

The smooth core densities ña
c (r) are like the smooth partial waves expanded in a few (two or

three) Bessel functions, Gaussians, polynomials or otherwise, fitted such that it matches the true
core density smoothly at the cut-off radius.

The Localized Potential

An additional freedom in PAW is that for any operator L̂, localized within the augmentation
spheres, we can exploit the identity (6.8)∑

i

|φ̃a
i 〉〈p̃a

i | = 1 (7.20)

valid within the spheres, to get

L̂ =
∑

a

∑
i1i2

|p̃a
i1〉〈φ̃

a
i1 |L̂|φ̃

a
i2〉〈p̃

a
i2 |

so for any potential v̄(r) =
∑

a v̄
a(r−Ra) localized within the augmentation spheres (i.e. v̄a(r) = 0

for r > ra
c ) we get the identity

0 =
∫
drñ(r)

∑
a

v̄a(r)−
∑

a

∫
drñav̄a(r)

This expression can be used as an ‘intelligent zero’. Using this, we can make the replacement of
the smooth potential ṽs(r) = uH [ρ̃](r) + vxc[ñ](r) → ṽs(r) = uH [ρ̃](r) + vxc[ñ](r) + v̄(r) if we also
subtract

∫
drña

c v̄
a(r) from F a and

∫
drφ̃a

i1
φ̃a

i2
v̄a(r) from Ia

i1i2
. The advantage of doing this is that

the Hartree potential and the xc-potential might not be optimally smooth close to the nuclei, but
if we define the localized potential properly, the sum of the three potentials might still be smooth.
Thus one can initially evaluate uH [ρ̃](r) and vxc[ñ](r) on an extra fine grid, add v̄(r) and then
restrict the total potential to the coarse grid again before solving the KS equation.

The typical way of constructing the localized potentials v̄a is by expanding it in some basis,
and then choosing the coefficients such that the potential uH [ρ̃](r) + vxc[ñ](r) + v̄(r) is optimally
smooth at the core for the reference system.

Inclusion of v̄a(r) changes the forces on each atom in a trivial fashion.

Exact Exchange Components

The additional information required of a data set if exact exchange calculations are required are:
1) The core-core exchange energy contribution Ea,c-c

xx , which is calculated using the methods of
section 7.1.2, restricting the state summations to the core orbitals only. 2) The matrix Xa

i1i2
used

to determine the valence-core contribution to the exchange energy. This can be determined by

Xa
i1i2 =

core∑
ic

∫ ∫
φa

i1
(r′)φa

ic
(r′)

|r− r′|
dr′φa

i2(r)φ
a
ic

(r)dr

=
core∑
ic

∑
L

GL
L1Lc

GL
L2Lc

4π
2l + 1

∫∫
drdr′

rl
<

rl+1
>

ua
j1(r)u

a
jc

(r)ua
jc

(r′)ua
j2(r

′)

=
core∑
jc

∑
l

4π
2l + 1

(∑
mmc

GL
L1Lc

GL
L2Lc

)∫∫
drdr′

rl
<

rl+1
>

ua
j1(r)u

a
jc

(r)ua
jc

(r′)ua
j2(r

′)

(7.21)
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The core-core exchange energy is only needed for total energy calculations; in energy differences
it will disappear.

Summary

When constructing a data set for a specific atom, one must specify the following quantities, all
defined within the augmentation spheres only:

1. φa
i from radial KS equation

2. φ̃a
i by appropriate smooth continuation of φa

i

3. p̃a
i from equation (7.15)

4. g̃a
L localized within r < rc, and satisfying

∫
drrl′ g̃a

L(r)YL′(r̂−Ra) = δLL′

5. na
c follows from φa

i by (7.19)

6. ña
c by appropriate smooth continuation of na

c

7. v̄a localized within r < ra
c , otherwise freely chosen to make ṽs optimally smooth for the

reference system

8. Xa
i1i2

determined by (7.21)

The adjustable parameters besides the shape of φ̃a, g̃a
L, v̄a, and ña

c are

1. Cut-off radii ra
c

2. Frozen core states

3. Number of basis set functions (range of index i on φa
i , φ̃a

i , and p̃a
i )

4. Energies of unbound partial waves

Choosing these parameters in such a way that the basis is sufficient for the description of all
possible environments for the specific chemical element, while still ensuring a smooth pseudo wave
function is a delicate procedure, although the optimal parameter choice is more stable than for
e.g. norm conserving or ultra soft pseudopotentials.

Once the quantities above have been constructed, all other ingredients of the PAW transforma-
tion follows, such as ∆a, ∆a

Lii′ , A
a, Ba

i1i2
, and Ca

i1i2i3i4
, the first two are needed for the construc-

tion of the compensation charges and the overlap operator, and the last three for determining the
Hamiltonian, and for evaluating the total energy.



Chapter 8

Numerical Results

The main analytic result of my work was the derivation of how to do hybrid HF-KS DFT calcu-
lations in the PAW formalism. Actually the expressions derived for the exact exchange energy
functional and the non-local Fock operator are more general in the sense that they form the main
ingredients of most exact exchange methods; the hybrid HF-KS method is simply the simplest
to implement (and most widely used). This chapter focuses on the numerical results of the cur-
rent implementation, sections 8.1 and 8.2, and on different numeric schemes for solving specific
problems arising when trying to implement the method, section 8.3.

The tests of section 8.1 and 8.2 focus on total energy calculation using the EXX functional,
which is the exchange-correlation functional, where correlation is neglected, and exchange is treated
exactly. As the code currently doesn’t support a self-consistent solution of the KS equation
using the EXX functional, these are only calculated non-self-consistently, i.e. the EXX energy
expression is evaluated using the orbitals obtained from doing a self-consistent calculation with
some other functional (PBE in my case). This type of functional evaluation corresponds to a first
order perturbation correction of the self-consistent xc-functional towards the EXX-functional, and
should therefore produce sensible results.

8.1 Isolated Atoms

I have implemented the non-self-consistent evaluation of exact exchange in both the atomic all-
electron calculator and the full PAW calculator of GPAW. The implementations follow the proce-
dures described in section 6.7 for PAW, and section 7.1.2 for the atomic calculations.

A comparison of the two methods for 16 light atoms is shown in table 8.1. In both methods,
the exchange energies are calculated on self-consistent PBE orbitals. The grid spacing of the PAW
calculator is 0.16 Å, and the unit cell is a cube of side length 12.8 Å. Compensation charges are
of s, p, and d type only. The atomic calculator treats the angular parts of the wave functions
analytically, and the radial part is distributed on a radial grid, which extends to infinity, and
has a very fine grid spacing near the nucleus. As the all-electron calculator can only treat spin
compensated atoms, both calculations have been made spin unpolarized.

Note that in the PAW calculator, the core states are treated within the frozen core approxi-
mation (section 6.2). The different types of exchange interactions are therefor treated differently.
The core-core energy is simply imported from the atomic calculator, which is why it is not shown
on the table, the valence-core interaction is included by the multiplication of the density matrix
with the Xa matrix (see section 6.7). The valence-valence interaction determined by making the
exchange integral on a compensated exchange density ñn′n(r) +

∑
a Z̃

a
n′n(r), and adding some

on-site correction ∆Ea,v-v
x . In the atomic calculator, there is no difference in the treatment of the

valence and core states, the division is merely to ease comparison of the methods.
The table shows excellent agreement between the two methods, with a maximum error of 0.4

eV for fluorine. This discrepancy is acceptable for total energy calculations, which are much harder
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Atomic calculator PAW
Sym. All val-val val-core All val-val val-core ∆Ea,v-v

x

H 3.9 3.9 - 3.9 3.9 - -0.0
He 27.6 27.6 - 27.7 27.7 - 0.8
Li 46.5 1.6 0.5 46.5 1.6 0.5 0.0
Be 72.4 9.5 1.7 72.4 9.5 1.7 0.0
C 126.5 27.4 4.3 126.6 27.4 4.4 0.1
N 162.7 44.8 6.2 162.7 44.8 6.2 0.0
O 207.1 70.2 8.4 207.3 70.2 8.6 -0.4
F 261.7 105.3 11.0 262.1 105.4 11.3 -1.1
Ne 328.0 151.9 14.0 328.6 152.3 14.1 9.3
Na 378.9 1.5 0.7 378.9 1.5 0.7 0.0
Mg 434.8 7.8 2.3 434.8 7.8 2.3 0.0
Al 488.6 12.1 4.2 488.5 12.1 4.1 0.0
Si 545.5 19.1 6.6 545.4 19.1 6.5 0.1
P 606.5 29.7 9.7 606.5 29.7 9.7 0.1
S 672.6 44.9 13.5 672.6 44.8 13.5 0.2
Cl 744.5 65.3 17.8 744.4 65.3 17.7 0.4

Table 8.1: Exact exchange energies of isolated atoms in eV calculated non-self-consistently using
PBE orbitals. Contributions to the exchange energies are separated into valence-valence (val-val),
valence-core (val-core), and core-core (included in ‘all’) contributions. The last column shows the
on-site PAW corrections to the valence-valence part ∆Ea,v-v

x explicitly.

to converge than energy differences. It is also seen that the PAW correction ∆Ea,v-v
x can be of

considerable size; 9.3 eV for neon. This does not mean that it is necessarily important in bonding,
i.e. it might remain unchanged despite the formation of bonds.

8.2 Molecules

In the article [28] by Blaha, Kurth, and Perdew, they report the atomization energy of 20 small
molecules evaluated self-consistently using PBE xc-functional, and for a range of other functionals,
including EXX, evaluated non-self-consistently with the PBE orbitals. This database serves as a
benchmark for my implementation of exact exchange.

The atomization energies from [28] and those calculated in GPAW are compared in table 8.2.
The test results have also been compiled graphically on figures 8.1 and 8.2. All values are in
kcal/mol1. The GPAW calculations have been done with a 14×12×12 Å unit cell, a grid spacing
of 0.175 Å, and compensation charges have been included up to d type harmonics.

These calculations were all done with the setup files used in GPAW in February 2006. Redoing
the calculations with the current setup files (calculated in May 2006), the mean absolute error of
the PBE calculation (compared to Blaha) increased to 1.4 kcal/mol, and EXX increased to 3.0
kcal/mol, i.e. both increased by approximately a factor of two compared to the old setup files.
This demonstrates that the remaining discrepancy is well within the uncertainty caused by the
setup files. Figure 8.2 shows that the errors of the PBE calculations and the EXX calculations
are highly correlated, indicating that the error might be dominated by errors in the kinetic- or
Hartree energy terms.

It is important to take notice of the last column of table 8.2 showing the valence-valence
contribution to the exchange energy only. Remember that the purpose of going throug all the
added comlexity of the PAW method is that other pseudopotential methods doesn’t have access
to the core orbitals, making the valence-core part of exact exchange inaccessible. The table shows

1Conversions factors are: 1 eV = 23.06 kcal/mol and 1 kcal/mol = 43.36 meV
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Figure 8.1: Comparison of results from Blaha et al. [28] and GPAW result for self-consistent PBE
atomization energies (left) and perturbative (using PBE orbitals) EXX atomization energies (right).
All values are relative to experimental data and measured in kcal/mol.

Figure 8.2: Direct comparison of the Blaha and GPAW atomization energies.
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Self-consistent PBE Perturbative EXX
Mol. BLAHA GPAW BLAHA GPAW v-v only
H2 104.6 104.5 84.0 84.0 84.0
LiH 53.5 53.3 33.9 34.2 30.4
CH4 419.8 420.3 327.2 327.5 331.1
NH3 301.7 301.3 199.5 199.1 203.4
OH 109.8 109.4 67.3 66.0 67.5
H2O 234.2 233.3 154.6 153.9 156.4
HF 142.0 141.4 96.1 95.8 96.8
Li2 19.9 19.7 3.5 3.9 -1.0
Be2 9.8 9.7 -11.0 -10.0 -6.9
C2H2 414.9 416.8 290.6 294.0 293.7
C2H4 571.5 573.0 423.9 427.6 433.0
HCN 326.1 327.5 194.5 197.5 195.0
CO 268.8 269.4 169.2 170.3 165.9
N2 243.2 243.8 110.2 111.1 107.0
NO 171.9 170.1 45.6 49.3 50.3
O2 143.7 142.7 24.9 24.5 25.8
F2 53.4 53.0 -43.3 -41.2 -40.8
P2 121.1 119.6 31.8 31.1 16.5
Cl2 65.1 65.1 15.5 18.1 19.5
MAE - 0.7 - 1.4 3.6

Table 8.2: Comparison of results from Blaha et al. [28] and GPAW result for self-consistent PBE
atomization energies (left) and perturbative (using PBE orbitals) EXX atomization energies (right).
All values are in kcal/mol. MAE is the mean absolute error of the GPAW results compared to Blaha.

that this part is important for the correct description of exact exchange. For P2, the valence-
valence exchange energy difference is off by almost 14 kcal/mol compared to the total exchange
difference. This is the justification for all the work done in section 6.

In reference [36], by Paier, Hirschl, Marsman, and Kresse, they have performed calculations
on the G2-1 data set, and found that introducing 25% exact exchange in the PBE functional
(i.e. using the PBE0 functional), reduces the mean absoloute error compared to experimental
atomization energies from 8.4 to 3.7 kcal/mol.2 These results are all determined with self-consistent
calculations, and full geometry optimization. To see if any improvement over PBE can be achieved
by evaluating exact exchange non-self-consistently, I have tabulated the data shown in table 8.3.
These have been calculated with the new setup files of slightly reduced quality.

The table clearly shows that including 100% exact exchange, and neglecting correlation (the
EXX functional) is a very bad idea, and also that PBE0 evaluated non self-consistently on average
doesn’t make any improvement on the PBE results (on the contrary the MAE is increased from
8.2 to 8.5 kcal/mol).

2These values have also been compared to calculations done in Gaussian. The two programs agree within 0.5
kcal/mol on average, and has a max deviation of 1.5 kcal/mol.
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Mol Expt LDA PBE∗ revPBE RPBE PBE0 EXX
H2 109.5 113.2 104.6 105.5 105.5 105.1 84.0
LiH 57.8 62.1 54.8 54.4 54.7 53.5 34.7
CH4 419.3 462.9 420.6 412.2 411.3 411.3 325.2
NH3 297.4 338.1 302.7 294.8 294.0 289.3 198.6
H2O 232.2 265.0 232.8 226.1 225.2 219.7 150.4
HF 140.8 159.6 139.6 135.7 135.0 130.7 91.1
Li2 24.4 24.1 20.4 19.7 20.7 19.1 3.9
LiF 138.9 152.9 136.2 130.6 130.8 122.4 77.5
Be2 3.0 13.6 10.6 8.7 8.7 4.9 -12.9
C2H2 405.4 462.2 417.2 404.0 402.5 395.3 287.9
C2H4 562.6 634.1 573.4 557.9 556.2 551.7 418.9
HCN 311.9 362.8 328.4 317.0 315.7 303.1 191.8
CO 259.3 297.9 268.1 258.4 257.1 246.0 164.2
N2 228.5 268.5 244.8 235.0 234.0 218.1 108.5
O2 120.5 173.4 142.5 133.3 132.0 114.7 19.6
F2 38.5 77.8 53.1 46.1 45.2 28.4 -46.5
P2 117.3 146.0 123.3 117.2 116.4 107.5 30.7
Cl2 58.0 85.4 67.5 62.1 61.4 55.9 11.8
MAE - 31.9 8.2 5.0 5.1 8.5 77.0

Table 8.3: Atomization energies in kcal/mol for a self number of functionals. * indicates that
the PBE functional has been evaluated self-consistently; all other functionals are evaluated using PBE
densities. The unit cell is a cube of side length 21.8 Å, grid-spacing is 0.16 Å, max angular momentum
of compensation charges is lmax = 2.
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8.3 Miscellaneous

In addition to the implementation of the non-self-consistent evaluation of exact exchange, I have
done the following work:

Parallel implementation
To support calculations on large systems, I have designed the code to work in parallel com-
putations. I have some test results, but they are not interesting, as they just show that the
parallel calculations gives the same results as serial calculations.

Wannier functions
The computational time of exact exchange evaluation scales quadratically with the number
of bands, which makes it the limiting factor for most systems. To avoid this, I have made a
version of the code, which makes the rotation of the KS functions into the localized Wannier
function, as described in appendix B. The locality of the Wannier functions can then be used
to skip evaluation of exchange terms, for which the overlap is known to be (practical) zero.
The transformation to Wannier functions and subsequent evaluation of the exchange integrals
works without complaint, giving almost exact identical results to the KS orbital based code,
but I have not yet implemented the part to exploit the locality of the basis. The problems
are that a) the success of the localization procedure is hard to predict. The localization
process does output a center and a measure of the spread of the resulting Wannier functions,
but determining a safe cut-off distance from these is not trivial. b) the actual construction
of the Wannier functions is quite time-consuming, defeating the entire purpose for all but
the largest of systems.

Different Poisson solvers
The Poisson solver in GPAW can not handle charged densities. This is usually not a problem
when doing calculations on neutral systems, but when evaluating exact exchange in PAW,
we need to determine the potential (6.77) of the exchange density ñn′n(r) +

∑
a Z̃

a
n′n(r),

which has unit total charge for the diagonal n = n′ terms, regardless of the total charge
of the considered system. The different methods I implemented to handle this problem are
discussed and tested in section 8.3.1.

Spherical harmonics
One could suspect that the product φn(r)φn′(r) has more angular features than n(r) =∑

n |φn(r)|2, thus making higher order components of the exchange compensation charges
Z̃nn′ required than for the standard compensation charges Z̃. Going to higher orders was
not possible in GPAW as the first few spherical harmonics where simply hard-coded into the
program. Spherical harmonics has many potential uses in the code, for example for making
multipole expansions of the density, such that the BC’s of the real-space Poisson solver can
be correctly determined (in stead of the Dirichlet conditions currently enforced). Spherical
harmonics are also needed to make higher order Gaussian neutralization of charged densities,
as will be described in section 8.3.1.

All in all, I decided to write some code for automatically generating arbitrary spherical
harmonics. The recurrence relations needed for generating spherical harmonics in polar
coordinates are quite standard, but when they are needed in Cartesian form, this requires a
subsequent translation of the coordinates. To avoid this, I rewrote the standard recurrence
relations to generate the harmonics in Cartesian form directly. The equations and tests of
the program can be found in appendix D.3.

Time Scalings

An important aspect of exact exchange, and one of the things that prevents its widespread use,
is the computational cost of the evaluation. The double sum over states, and the solution of a
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Poisson equation implies that calculating the exchange potential scales like

(nbandsNk)2Ngrid-points lnNgrid-points

assuming an FFT Poisson solver.
In my non-self-consistent evaluations, the exact exchange part only takes up to 10% of the total

time. According to J. Paier, who implemented a self-consistent evaluation in Vasp, including exact
exchange in a DFT calculation takes between 50 and 100 times more time than standard GGA
evaluations. This obviously depends on the size of the system, being worse for larger systems.

8.3.1 The Poisson Equation

In general, the potential v(r) associated with the density n(r), is defined by:

v(r) =
∫
dr′

n(r′)
|r− r′|

(8.1)

which is the solution of the Poisson equation

∇2v(r) = −4πn(r) (8.2)

The divergence as r → r′ of the integrand in (8.1) makes it hard to handle numerically, so solving
(8.2) is usually preferable. This can either be done directly in real space, or it can be done in
reciprocal space.

Reciprocal Space

The Fourier transform of (8.2) is (my convention for the Fourier transform is summarized in
appendix C)

−k2v(k) = −4πn(k) (8.3)

thus the potential can be determined from

v(k) = 4πn(k)/k2 (8.4)

If one works in real space, the procedure requires a Fourier transform of the density, a division, and
an inverse Fourier transform of the potential back to real space. With the Fast Fourier Transform
(FFT) the Fourier transformation is only an order N logN operation, so this is much faster than
making the integration for each grid point, which costs N2 flops (N for the integration times N
grid-points).

For the evaluation of energies, we often encounter the Coulomb integrals

(n1|n2) =
∫∫

drdr′
n∗1(r)n2(r′)
|r− r′|

=
∫
dr n∗1(r)v2(r) (8.5)

where v2 is the potential of n2.
Inserting the Fourier transform of n1(r) and v2(r) in this expression, we get the particularly

simple expression:

(n1|n2) =
∫
dr n∗1(r)v2(r)

=
∫
dr
∫

dk
(2π)3

n∗1(k)e−ik·r
∫

dk′

(2π)3
4πn(k′)

k′2
eik′·r

= 4π
∫∫

dkdk′

(2π)6
n∗1(k)n2(k′)

k′2

∫
dre−i(k−k′)·r

= 4π
∫

dk
(2π)3

n∗1(k)n2(k)
k2

(8.6)
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Or in the discrete case3

(n1|n2) =
4π
V

∑
k

n∗1,kn2,k

k2
(8.7)

So we do not have to transform back to real space, and the double integration of (8.5) is replaced
by a single integration.

There are two problems with solving the Poisson equation in reciprocal space: a) The enforce-
ment of periodic boundary conditions, which is a problem if the original density was isolated in
space, in which case the FFT produce erroneous interactions with the periodically repeated images
of the original densities. b) The division by k2, which is a problem if the density has a non-zero
total charge, since n(k = 0) =

∫
drn(r).

The following two sections describes two different techniques for solving these problems, which
have both been implemented and tested for performance.

The Tuckerman Trick

The first technique is due to Tuckerman [62], and is designed for the reciprocal space approach to
the Poisson equation.

Consider for simplicity a cubic unit cell of side length L. Figure 8.3 shows a sketch of the
system in 1D, including the artificially repeated images of the density. If we know that the density

L

L−a

a

Figure 8.3: 1D sketch of the Tuckerman problem.

is localized within a sphere of diameter a, we can write the potential as

vT (r) =
∫
dr′n(r′)φ(|r− r′|) (8.8)

where φ(r) is a truncated Coulomb kernel

φ(r) =

{
1/r , r < rc

0 , r ≥ rc
(8.9)

with a cut-off radius rc satisfying a < rc < L−a, see figure 8.3. From this, it follows that a < L/2,
i.e. the unit cell must be at least twice as big as the extent of the density. Making a Fourier
transform of this potential we get∫

dk
(2π)3

eik·rvT (k) =
∫
dr′

∫
dk′

(2π)3
eik′·r′n(k′)φ(|r− r′|)

=
∫

dk′

(2π)3
eik′·rn(k′)

∫
dr′′ eik′·r′′φ(r′′)

(8.10)

where r′′ = r′ − r. From this we see that the potential in reciprocal space is

vT (k) = 2πn(k)
∫ rc

0

rdr
∫ π

0

sin θdθeikr cos θ

= 4πn(k)
∫ rc

r=0

dr cos(kr)/k

=
4πn(k)
k2

(1− cos(krc))

(8.11)

3In a numerical Fourier transform, e.g. FFT, eq. (C.4) has a prefactor 1/N3 instead of 1/V , thus (8.7) would
read (n1|n2) = 4πV

N6

P
k n∗

1,kn2,k/k2
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And the expression for the Coulomb integral becomes

(n1|n2) = 4π
∫

dk
(2π)3

n∗1(k)n2(k)
k2

(1− cos(krc)) (8.12)

The Tuckerman potential does not suffer from the divergence at k = 0 as:

lim
k→0

vT (k) = 2πr2c (8.13)

Thus both the problem with non charge-neutral densities, and with the artificial interactions with
periodic images are avoided. The cure however is rather expensive, as the unit-cell must be twice
as big as the extend of the density in all three dimensions.

Gaussian neutralization

Another way of coping with the non-zero total charge, is to just subtract a density of the same
total charge as the original, but with a a well known potential, and then add this afterward. Take
for example the Gaussian density distribution (of unit total charge) described by

ng(r) =
( a
π

)3/2

e−ar2
, ng(k) = e−k2/4a (8.14)

with the potential

vg(r) =
erf(

√
ar)

r
, vg(k) =

4π
k2
e−k2/4a (8.15)

To determine the potential of a density n with total charge Z, we can then calculate

v[n](r) = v[n− Zng](r) + Zvg(r) (8.16)

where v[n](r) is the potential of the density n.
To do a symmetric neutralization of both densities in a Coulomb integral, one could do

(n1|n2) = (n1 − Z1ng|n2 − Z2ng) + (Z∗
2n1 + Z1n

∗
2 − Z∗

1Z2ng|ng) (8.17)

This procedure solves the problem with non-zero total charge, but there can still be artificial
interactions from higher order moments (than the monopole) with the periodic images. To take
care of these, one could simply proceed with subtracting generalized gaussians of higher order:

v[n](r) = v [n−
∑

LQLgL(r)] (r) +
∑
L

QLvL(r) (8.18)

where QL are the multipole moments of n, gL are generalized gaussians, and vL are the potential of
the gaussians. The potentials vL of the gaussians (7.18), can be determined analytically in terms
of Whittaker functions. These proved difficult to implement,as they satisfied quite complicated
recursion relations.

This method is applicable to both real and reciprocal space solvers. Presently I only neutralize
the monopole.

Real Space

In principle densities of non-zero total charge is not a problem when solving the Poisson equation
by some real-space differential equation solver. The specific choice of solver used in GPAW however
can not handle charged systems, so when using the real space solver, I neutralize the density using
gaussians, as explained in the previous paragraph.

A different problem in real space is that if one applies Dirichlet BC’s, the potential must be
completely localized within the unit cell to be described properly. Alternatively, one could do a
multipole expansion of the density, as described in appendix D.2, and then apply the correct BC’s.
In this case only the density itself should be completely contained within the unit cell, for the
potential to be described correctly.
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Periodic Systems

All the procedures described above for handling charged systems, involved isolated systems. Of
course charged systems does not make sense if it is periodically repeated, as this would imply
an infinite total charge. On the other hand, the densities of the exchange potential (6.77) has a
non-zero charge for diagonal terms of the summation (n = n′) independently of the choice of BC’s.
How this should be handled is still an unsolved problem in my code. Many papers discuss the
problem of charged systems in a periodic cell, but most seem to base their ideas on the periodic
boundary conditions being artificial, i.e. that in reality the charged system is isolated and one
should just correct the error of applying periodic BC’s.

Test of Different Poisson Approaches

To test my different Coulomb energy calculators, I have applied them to the the electron density
of the Hydrogen atom, i.e. the square of the 1s wave function

n1s(r) =
1
π
e−2r (8.19)

for which the Hartree energy can be calculated analytically

UH [n1s] =
1
2
((n1s)) =

5
16

= 0.3125Ha (8.20)

or equivalently, the exact exchange energy -5/16 Ha (for one electron systems the potential and
the energy of the Hartree and Exchange functionals are equal but of opposite sign). This model
system has both a non-zero total charge, and a slowly decaying density. It also has a cusp at the
origin, which makes it difficult to resolve using uniform grids. The results are shown in figure 8.4
The upper left figure shows the convergence of the Hartree energy with respect to the number
of grid-points, using the three different methods: 1) Real space, neutralized with a Gaussian 2)
Solved in reciprocal space with a Gaussian neutralization and 3) Integrated in reciprocal space
using the Tuckerman trick. It is seen that all methods converge almost exponentially to within 3
mHartree at 443 = 85184 grid-points. After that not much accuracy can be gained, especially not
for the real-space solver.

The upper right figure compares the computational cost of the three methods. The real-space
solver determines the potential by an iterative approach. It is seen that the real-space method
scales quadratically with the total number of grid-points (the time per iteration (bottom left)
increases linearly, and the number of iterations required for the Poisson solver to converge (bottom
right) scales approximately linear with the number of grid-points). The two k-space methods scale
almost linearly (N logN) with the grid-points, the Gaussian neutralization being slightly faster
than the Tuckerman procedure (presumably due to the evaluation of the cosine function in (8.11)).
The size of the unit cell is 20 Bohr.

It seems that solving the Poisson equation in reciprocal space, using a gaussian neutralization
is the best choice, so this is the method I use for all serial calculations. When running the code in
parallel, I use the real-space solver, as this is the only one that works in parallel presently.



8.3 Miscellaneous 71

3
02

3
44

3
25

3
06

3
86

3
67

3
48

3
29

3
001

3N

�������

�����

�����

����	


 ��
��

 �
��
��
��
��
����
��

��
�
��
��
� �
��
�

��� �"!$#&%'�)(+*,*
��� -/.$0'#&%1�"(+*,*
��� -/.$0'#&23(/-/4��5�768�"9

3
02

3
44

3
25

3
06

3
86

3
67

3
48

3
29

3
001

3N

�

:

�;�

�<:

= �

�

��
��>
�

�?�@�"!
�?�@-/.A0'#B%'�"(/*,*
�?�@-/.A0'#B23(/-/4��5�768�"9

302 344 325 306 386 367 348 329 3001
3N

�

���C�

= �C�

D �C�

E<�C�

:��<�

F �<�

G

��H
��

�
��
��

��
�
�>
�

302 344 325 306 386 367 348 329 3001
3N

�

:

�;�

�<:

= �

= :

D �

D :

EC�

I �
�J
��
�K

�
��
��

��>

Figure 8.4: Top: Convergence of the Hartree energy of Hydrogen (left) and time scaling (right) for
3 different poisson approaches.
Bottom: Timings of the real-space poisson solver. Time per iteration of the solver (left), and number
of iterations as a function of the number of grid-points (right). Unit cell size: 20 Bohr for all
calculations.
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Chapter 9

Conclusion

Several tests show that inclusion of exact exchange in density functional calculations improves
atomization energies of molecules, the HOMO-LUMO band gaps of the Kohn-Sham orbitals, the
cohesive energies of solids etc to a large degree, and so seems to be an important step towards
reaching chemical accuracy in the predicted values of DFT. There are also theoretical arguments
why exchange should be treated exactly, among other things, exact exchange removes the spurious
self-interaction of the Hartree potential, and has the correct 1/r asymptotic behavior required for
the existence of a Rydberg series. Unfortunately including non-local contributions in the exchange
energy, is incompatible with local approximations of the correlation energy, as the supposed long
range cancellation can not be achieved. This incompatibility is sought solved by a) including only
a fraction of exact exchange, or b) screen the Coulomb kernel of exact exchange c) devise new
(non-local) correlation functionals compatible with non-local exact exchange.

The subject of implementing exact exchange in PAW had, at the start of my project, not been
studied in literature. There has however recently been published a paper by Paier et al. [36],
on the subject. Although they use the formulation of PAW by Joubert and Kresse, [58], their
final equations seems to be equivalent to mine. They have made a self-consistent implementation
of the hybrid HF-KS method, and the results demonstrated in the paper shows promise for the
application of the method. Specifically they show consistent results with existing all-electron
implementations of exact exchange. They get an agreement in atomization energies of less than 1
kcal/mol of their plane wave based PAW program Vasp compared to Gaussian which is an all
electron method using a localized basis set. That PAW calculations can compare this well with
all electron methods is encouraging, as the computational speed-up of using PAW is very high.

I have made an implementation of exact exchange in the GPAW program, which currently
supports non-self-consistent EXX evaluations for isolated systems. Testing the code shows that it
performs well. I have made all the derivations necessary for a self-consistent implementation of
e.g. hybrid HF-KS or a number of other exchange methods. The only part missing is the actual
implementation.

Future work includes making the code work for periodic systems, finishing the implementation
of the self-consistent hybrid HF-KS scheme, including other exact exchange methods like KLI,
LHF, and OEP, which are all procedures for localizing the non-local HF potential (in the sense of
making it multiplicative; the resulting potential is still non-local in the sense that it depends on
the global structure of the density) and to introduce screened exchange, which is just a screening
of the coulomb kernel of the exact exchange expression, making it more compatible with local
correlation approximations.

One should note that the purpose of going through all the added complexity of the PAW
method is that it is much faster than traditional all electron methods, and exact exchange is
inaccessible in other pseudopotential methods, as it requires access to the core orbitals.
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Appendix A

Exact Exchange

The non-interacting system is described by the Hamiltonian

H0 =
∑

ν

ενc
†
νcν (A.1)

where c†ν and cν is the creation and annihilation operator respectively, indicating the creation/annihilation
of a particle in the single particle state ν.

The eigenstates of the Hamiltonian is a Slater determinant denoted by |n1n2n3 . . .〉, where nν

is the occupation of the single particle state ν. The occupations nν can take the values 0 or 1, and
we keep the number of particles fixed, i.e.

∑
ν nν = N .

∑
{nν} Will be used to indicate the infinite

sum over all possible slater determinants, i.e. all exited states of the N particle non-interacting
system. I.e. ∑

{nν}

=
1∑

n1=0

1∑
n2=0

1∑
n3=0

. . .

The Coulomb interaction is included as a perturbation to H0

H = H0 + Vint (A.2)

where Vint in the first quantization is:

Vint =
1
2

∑
i 6=j

v(ri − rj) (A.3)

and in second quantization:

Vint =
1
2

∑
αβγδ

vαβ,γδc
†
αc

†
βcδcγ (A.4)

where

vαβ,γδ =
∫∫

drdr′φ∗α(r)φ∗β(r′)v(|r− r′|)φγ(r)φδ(r′) (A.5)

and v(|r− r′|) = 1/|r− r′| is the Coulomb kernel.
To determine expectation values, we need the density matrix

ρ0 = e−βH0 (A.6)
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with β = 1/kBT , and we need the partition function

Z0 = Tr ρ0

=
∑
{nν}

〈n1n2 . . . |e−β
P

ν ενc†νcν |n1n2 . . .〉

=
∑
{nν}

∏
ν

e−βενnν

=
∏
ν

(
1 + e−βεν

)
(A.7)

where nν is the occupation of state ν.
We can now determine

〈Vint〉0 =
1
Z0

Tr[ρ0Vint]

=
1
Z0

∑
{nν}

〈n1n2 . . . |e−β
P

ν ενc†νcν
1
2

∑
αβγδ

vαβ,γδc
†
αc

†
βcδcγ |n1n2 . . .〉

=
1

2Z0

∑
αβγδ

vαβ,γδ

∑
{nν}

〈n1n2 . . . |c†αc
†
βcδcγ |n1n2 . . .〉

∏
ν

e−βενnν

(A.8)

using wicks theorem, we see that 〈n1n2 . . . |c†αc
†
βcδcγ |n1n2 . . .〉 = nαnβ(δαγδβδ − δαδδβγ)

〈Vint〉0 =
1

2Z0

∑
αβ

∑
{nν}

nαnβ [vαβ,αβ − vαβ,βα]
∏
ν

e−βενnν

=
1
2

∑
αβ

[vαβ,αβ − vαβ,βα] e−βεαe−βεβ

∏
ν 6=α,β

(
1 + e−βεν

)∏
ν (1 + e−βεν )

=
1
2

∑
αβ

[vαβ,αβ − vαβ,βα] e−βεα
e−βεα

1 + e−βεα︸ ︷︷ ︸
fα

e−βεβ

1 + e−βεβ︸ ︷︷ ︸
fβ

=
1
2

∑
αβ

fαfβ [vαβ,αβ − vαβ,βα]

(A.9)

where we have identified the Fermi distributions f . Inserting eq. (A.5) we see that:

〈Vint〉0 =
1
2

∑
αβ

fαfβ

∫∫
drdr′

[
φ∗α(r)φ∗β(r′)φα(r)φβ(r′)

|r− r′|
−
φ∗α(r)φ∗β(r′)φβ(r)φα(r′)

|r− r′|

]

=
1
2

∫∫
drdr′

[∑
α fα|φα(r)|2

] [∑
β fβ |φβ(r′)|2

]
|r− r′|

− 1
2

∫∫
drdr′

|
∑

α fαφ
∗
α(r)φα(r′)|2

|r− r′|
= UH + Ex

(A.10)



Appendix B

Wannier Functions and Exact
Exchange

Although the Bloch representation is very advantageous for the actual calculations of the eigen-
state of a single particle Hamiltonian, it is not necessarily well suited for other purposes, such as
visualization, interpretation and tight-binding approximations, for which localized states are more
convenient. Therefore a suitable (unitary) transformation of the Bloch states, subsequent to using
these for solving the appropriate Schrödinger equation, is often applied.

For a crystal of Nk lattice point, or equivalently a Monkhorst-Pack sampling of the Brillouin
zone with a total of Nk k-points, the Wannier transformation is defined by

wnR =
1√
Nk

∑
k

e−ik·R
∑
m

Uknmψmk (B.1)

To get the inverse transformation, we multiply by
∑

R exp(ik′ ·R)/
√
Nk on both sides

1√
Nk

∑
R

eik′·RwnR =
∑
k

1
Nk

∑
R

ei(k′−k)·R

︸ ︷︷ ︸
δkk′

∑
m

Uknmψmk =
∑
m

Uk′nmψmk′ (B.2)

and multiplying by
∑

n U
∗
k′nl we get∑

n

U∗
k′nl

1√
Nk

∑
R

eik′·RwnR =
∑
m

∑
n

U∗
k′nlUk′nm︸ ︷︷ ︸
δlm

ψmk′ = ψlk′ (B.3)

where it has been used that U is unitary, i.e. U ·U† = 1 ⇒
∑

δ UαδU
∗
βδ = δαβ .

From this, we get the inverse rotation

ψnk =
1√
Nk

∑
R

eik·R
∑
m

U∗
kmnwmR (B.4)

The Wannier functions have a very useful translational symmetry. This is seen by using that
ψnk(r + R) = exp(ik ·R)ψnk(r), to get

wnR(r) =
1√
Nk

∑
k

e−ik·R
∑
m

Uknmψmk(r)

=
1√
Nk

∑
k

e−ik·R
∑
m

Uknme
ik·Rψmk(r−R)

= wn0(r−R)

(B.5)
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Exact Exchange

To determine the expression for exact exchange in terms of Wannier functions, the inverse trans-
formation is applied to the standard expression

Exx = −1
2

∑
kk′

∑
nm

fnfm((ψ∗nkψmk′))

= −1
2

∑
kk′

∑
nm

fnfm(ψ∗nkψmk′ |ψ∗nkψmk′)

= −1
2

∑
kk′

∑
nm

fnfm

(
1√
Nk

∑
Rα

e−ik·Rα

∑
α

Ukαnw
∗
αRα

1√
Nk

∑
Rβ

eik′·Rβ

∑
β

U∗
k′βmwβRβ

∣∣∣∣∣∣∣∣∣∣ 1√
Nk

∑
Rγ

e−ik·Rγ

∑
γ

Ukγnw
∗
γRγ

1√
Nk

∑
Rδ

eik′·Rδ

∑
δ

U∗
k′δmwδRδ

)

= −1
2

∑
αβ
γδ

∑
RαRβ

RγRδ

F αγ
RαRγ

F ∗
βδ

RβRδ

(w∗
αRα

wβRβ
|w∗

γRγ
wδRδ

)

(B.6)

where
F αγ

RαRγ

=
1
Nk

∑
k

eik(Rα−Rγ)
∑

n

fnU
∗
kαnUkγn (B.7)

For extended systems with a band-gap, the occupation numbers are all unity below the Fermi
level, so

F αγ
RαRγ

=
1
Nk

∑
k

eik(Rα−Rγ)
∑

n

U∗
kαnUkγn = δαγ

1
Nk

∑
k

eik(Rα−Rγ) = δαγδRαRγ
(B.8)

such that

Exx = −1
2

∑
αβ

∑
RαRβ

(w∗
αRα

wβRβ
|w∗

αRα
wβRβ

)

= −1
2

∑
αβ

∑
RR′

((w∗
αRwβR′))

= −Nk

2

∑
αβ

∑
R

((w∗
α0wβR))

(B.9)

where in the last line, the translational symmetry of the Wannier functions have been used to
reduce the order of the summation.



Appendix C

Fourier Transform

To represent a state |f〉 as a function of position in real space, we project it onto the basis functions
of real space |r〉, to get 〈r|f〉 = f(r). At times it is advantageous to represent states in reciprocal (or
Fourier) space. This is the space spanned by the periodic eigenstates |k〉 of the Laplace operator:

〈r|k〉 = eik·r (C.1)

Due to the periodicity of the complex exponential, the eigenstates |k〉 are only distinct for −π ≤
k · r < π (or a similar 2π interval).

C.1 Finite Volume - Discrete k

For a finite real space, the periodic boundary conditions required of the k-states imply a discrete
spectrum of eigenstates. In this case, we have the completeness relations∫

dr|r〉〈r| = 1 (C.2a)

1
V

∑
k

|k〉〈k| = 1 (C.2b)

from which it is easily seen that

f(r) = 〈r|f〉 =
1
V

∑
k

〈r|k〉〈k|f〉 =
1
V

∑
k

eik·rfk (C.3)

and

fk = 〈k|f〉 =
∫
dr〈k|r〉〈r|f〉 =

∫
dre−ik·rf(r) (C.4)

Note the useful relations to the Dirac delta functions

〈r|r′〉 =
1
V

∑
k

eik·(r−r′) = δ(r− r′) and 〈k|k′〉 =
∫
dre−i(k−k′)·r = V δk,k′ (C.5)

C.2 Infinite Volume - Continuous k

The continuous version of the Fourier transform is obtained by the substitution

1
V

∑
k

→
∫

dk
(2π)3

(C.6)
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such that the transformation rules (C.3)-(C.4) translates to

f(r) =
∫

dk
(2π)3

f(k)eik·r (C.7)

and
f(k) =

∫
drf(r)e−ik·r (C.8)

In the continuous case, the delta functions are given by

〈r|r′〉 =
∫

dk
(2π)3

eik·(r−r′) = δ(r− r′) and 〈k|k′〉 =
∫
dre−i(k−k′)·r = (2π)3δ(k− k′) (C.9)



Appendix D

Multipoles and Spherical
Harmonics

D.1 Spherical polar coordinates

I choose the name convention for the curvilinear coordinates of the spherical coordinate system, in
which φ is the azimuthal angle in the xy-plane from the x-axis with 0 ≤ φ < 2π, θ is the polar angle
from the z-axis with 0 ≤ θ ≤ π, and r is the distance (radius) from a point to the origin. This is
the convention most commonly used among physicists, while mathematicians usually interchange
the two angular coordinates.

Figure D.1: Spherical polar coordinates

The spherical coordinates (r, θ, φ) are related to the Cartesian coordinates (x, y, z) by
r =

√
x2 + y2 + z2

θ = tan−1(
√
x2 + y2/z)

φ = tan−1(y/x)


r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ
θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ
φ̂ = − sinφx̂ + cosφŷ

(D.1)

where the inverse tangent must be suitably defined to take the correct quadrant of (x, y) into
account.
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Inversely, the Cartesian coordinates are related to the spherical by
x = r cosφ sin θ
y = r sinφ sin θ
z = r cos θ


x̂ = sin θ cosφr̂ + cos θ cosφθ̂ − sinφφ̂

ŷ = sin θ sinφr̂ + cos θ sinφθ̂ + cosφφ̂

ẑ = cos θr̂− sin θθ̂
(D.2)

The relevant differential quantities are:

Line element: dl =drr̂ + rdθθ̂ + r sin θdφφ̂ (D.3a)

Volume element: dr =r2 sin θdrdθdφ (D.3b)

Gradient: ∇t =
∂t

∂r
r̂ +

1
r

∂t

∂θ
θ̂ +

1
r sin θ

∂t

∂φ
φ̂ (D.3c)

Divergence: ∇ · v =
1
r2

∂

∂r
(r2vr) +

1
r sin θ

∂

∂θ
(sin θvθ) +

1
r sin θ

∂vφ

∂φ
(D.3d)

Curl: ∇× v =
1

r sin θ

[
∂

∂θ
(sin θvφ)− ∂vθ

∂φ

]
r̂

+
1
r

[
1

sin θ
∂vr

∂φ
− ∂

∂r
(rvφ)

]
θ̂ +

1
r

[
∂

∂r
(rvθ)−

∂vr

∂θ

]
φ̂ (D.3e)

Laplacian: ∇2t =
1
r2

∂

∂r

(
r2
∂t

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂t

∂θ

)
+

1
r2 sin2 θ

∂2t

∂φ2
(D.3f)

D.2 Multipole Expansion

X

r

R

r′

ρ

O

The potential v(r) of the density n(r) is given by

v(r) =
∫
dr′

n(r′)
|r− r′|

(D.4)

if we know that the density is localized within a sphere of
radius R of our chosen origin, see the figure on the right,
the integrand of eq. (D.4) is only nonzero for r′ < R. If we
only wish to know the potential at positions outside of said
sphere, r > R, we can use the expansion theorem for the
Coulomb kernel [32] in spherical harmonics YL (see section
D.3 for a definition):

1
|r− r′|

=
∑
L

4π
2l + 1

rl
<

rl+1
>

Y ∗
L (r̂)YL(r̂′) (D.5)

where, since r′ < R < r, we can identify r< = min(r, r′) = r′

and r> = max(r, r′) = r.
Inserting (D.5) in equation (D.4) we get the identity

v(r) =
∑
L

4π
2l + 1

QL

rl+1
Y ∗

L (r) , for r > R (D.6)

where the expansion coefficients QL are given by

QL =
∫
drrln(r)YL(r) (D.7)

The expansion (D.6) is called a multipole expansion, and the coefficients (D.7) the multipole
moments. The set of moments Qlm for fixed l are known as the monopole for l = 0, the dipole for
l = 1, the quadrupole for l = 2, the octopole for l = 3 (as 23 = 8), etc. Evidently the individual
multipole components of the potential fall off as 1/rl+1 far from the density, so the dominant
contributions should be the low order moments.
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Generalized Gaussians

Consider the generalized Gaussian functions:

gL(r) = gl(r)YL(r̂) (D.8)

where YL(r̂) are the spherical harmonics, and gl(r) are given by:

gl(r) =
1√
4π

l!
(2l + 1)!

(4α)l+3/2rle−αr2
(D.9)

The spherical harmonics form a complete set of functions which are orthonormal with the weight
sin θ. They can thus be used as an expansion basis for any radially independent function.

The gaussians gl(r) also form a complete set of functions. They are orthogonal with the weight
r2 and are normalized such that ∫

r2drrlgl(r) = 1 (D.10)

From which we conclude that the functions gL(r) form a complete basis set.
The multipole moments of gL(r) are QL′ = δL,L′ , since

QL′ =
∫
drrl′gL(r)YL′(r̂) =

∫
rl′+2gl(r)dr

∫
YL(r̂)YL′(r̂)dr̂ =

∫
rl+2gl(r)drδL,L′ = δL,L′

(D.11)
which makes them very useful for making expansions with specific multipole moments. The gen-
eralized Gaussians and various integrals of these, have been studied in detail in [61].

Note that using eq. (7.5), the potential of the gaussians can be evaluated analytically, giving
vL(r) = vl(r)YL(r̂), where the radial part is given by:

vl(r) =
√

4πl!(4a)l+3/2

(2l + 1)(2l + 1)!

[
r−l−1

∫ r

0

r′
2l+2

e−ar′2dr′ + rl

∫ ∞

r

r′e−ar′2dr′
]

=
2
√

4π l! (4a)l+1/2

(2l + 1)(2l + 1)!
rlear2

{
1 +

2ear2/2

(2l + 3)(ar2)l/2+1/4
M 2l+1

4 , 2l+3
4

(ar2)

}

=
8
√
πa l!

(2l + 1)(2l + 1)!
(4ar)lear2

{
1 +

2
√
ar

(2l + 3) 1F1(1, l + 5/2; ar2)
}

where Mk,m(z) is the Whittaker function, and 1F1(k,m; z) is the confluent hypergeometric function
of the first kind. The first few potentials are listed below.

v0(r) =
4
√
π

r1

{√
π erf(

√
ar)
}

v1(r) =
4
√
π

3r2
{√

π erf
(√
ar
)
− 2

√
are−ar2

}
v2(r) =

4
√
π

15r3
{

3
√
π erf

(√
ar
)
−
(
6 + 4(

√
ar)2

)√
are−ar2

}
v3(r) =

4
√
π

105r4
{

15
√
π erf

(√
ar
)
−
(
30 + 20(

√
ar)2 + 8(

√
ar)4

)√
are−ar2

}
D.3 Spherical Harmonics

Consider the orbital angular momentum operator

L̂ = Q̂× P̂

= rr̂×−i∇

= −i
[
φ̂
∂

∂θ
− θ̂

1
sin θ

∂

∂φ

] (D.12)
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Let Y (θ, φ) denote the set of common eigenstates for the two operators L̂2 and L̂z

L̂2Y (θ, φ) = l(l + 1)Y (θ, φ) (D.13)

L̂zY (θ, φ) = mY (θ, φ) (D.14)

This set of coupled differential equations has nontrivial bounded solutions that are 2π periodic in
φ if and only if l is a nonnegative integer, and m is an integer in the range |m| ≤ l. The normalized
eigenstates satisfying these conditions are known as the spherical harmonics

Y m
l (θ, φ) = (−1)(m−|m|)/2

√
2l + 1

4π
(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ) eimφ (D.15)

where Pm
l (z) are the associated Legendre polynomials

Pm
l (z) =

(−1)m

2ll!
(1− z2)m/2 d

l+m

dzl+m
(z2 − 1)l (D.16)

The spherical harmonics of negative and positive m are related by a complex conjugation, through
the relation

Y m∗
l (θ, φ) = (−1)mY −m

l (θ, φ) (D.17)

and form a complete orthonormal set, satisfying∫ π

0

∫ 2π

0

sin θdθdφY m∗
l (θ, φ)Y m′

l′ (θ, φ) = δl,l′δm,m′ (D.18)

Note that as

L̂2 = L̂ · L̂ = − 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
(D.19)

we can express the Laplacian in terms of L̂2

∇2 =
1
r2

[
∂

∂r

(
r2
∂

∂r

)
− L̂2

]
(D.20)

from which we conclude that

∇2Y m
l (θ, φ) = − l(l + 1)

r2
Y m

l (θ, φ) (D.21)

one can define a set of real spherical harmonics (RSH), ym
l , by

y0
l = Y 0

l

ym
l =

{
(Y m

l + Y m∗
l ) /

√
2 =

√
(2)ReY m

l , m > 0(
Y
|m|
l + Y

|m|∗
l

)
/i
√

2 =
√

(2) ImY
|m|
l , m < 0

(D.22)

Which in explicit form is
ym

l (θ, φ) = C
|m|
l P

|m|
l (cos θ)Φm(φ) (D.23)

where

Cm
l =


√

2l+1
4π , m = 0√

2l+1
2π

(l−m)!
(l+m)! , m > 0

(D.24)

and

Φm(φ) =

{
cosmφ , m ≥ 0
sin |m|φ , m < 0

(D.25)
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The RSH satisfy the same equations as the ordinary spherical harmonics, except that it is no
longer an eigenstate of L̂z.

When working in Cartesian coordinates, it is usually more convenient to work with the solid
version of the RSH, here denoted by RSSH (real solid spherical harmonics). These are defined
by ȳm

l = rlym
l . The main reason for introducing the RSSH is that they are much more easily

described in Cartesian coordinates, and the recursion formulas for generating them becomes much
simpler, as will be shown shortly. The RSSH can be re-expressed as

ȳm
l (r, θ, φ) = rlC

|m|
l P

|m|
l (cos θ)Φm(φ)

= C
|m|
l

rl−|m|

sin|m|(θ)
P
|m|
l (cos θ) r|m| sin|m|(θ)Φm(φ)

= C
|m|
l P̄

|m|
l (r, z)Φ̄m(x, y)

= ȳm
l (x, y, z)

(D.26)

where P̄m
l (r, z) = rl−m/ sinm(θ)Pm

l (cos θ) and Φ̄m(x, y) = sinm(θ)Φm(φ). The advantage of this
formulation is seen by using the recurrence formula

cosmφ = cosφ cos(m− 1)φ− sinφ sin(m− 1)φ (D.27)
sinmφ = sinφ cos(m− 1)φ+ cosφ sin(m− 1)φ (D.28)

and the identities x = r sin θ cosφ and y = r sin θ sinφ to get

Φ̄0 = 1, Φ̄1 = x, Φ̄−1 = y (D.29)
m > 1 : Φ̄m = xΦ̄|m|−1 − yΦ̄1−|m| (D.30)

m < −1 : Φ̄m = yΦ̄|m|−1 + xΦ̄1−|m| (D.31)

and using the recurrence relations of Pm
l (cos θ) [35]

P 0
0 = 1 (D.32)

Pm+1
m+1 = (2m+ 1) sin θPm

m (D.33)
Pm

m+1 = (2m+ 1) cos θPm
m (D.34)

Pm
l =

2l − 1
l −m

cos θPm
l−1 −

l +m− 1
l −m

Pm
l−2 (D.35)

to get

P̄ 0
0 = 1 (D.36)

P̄m+1
m+1 = (2m+ 1)P̄m

m (D.37)
P̄m

m+1 = (2m+ 1)zP̄m
m (D.38)

P̄m
l =

2l − 1
l −m

zP̄m
l−1 −

l +m− 1
l −m

r2P̄m
l−2 (D.39)

Note that P̄m
l is a polynomial of order l−m in z with only even (odd) powers of z if l−m is even

(odd). The collective power of z and r is l −m in all terms of P̄m
l . The coordinate r only ever

appears in even powers (so we never have to evaluate the square root r =
√
x2 + y2 + z2).

The explicit form of the first 25 RSSH is shown in table D.1. A polar plot of the map of
the unit sphere is shown in figure D.2 for the same 25 RSSH (or equivalently the real spherical
harmonics, as these are identical on the unit sphere).

Note that ȳm
l (x, y, z) is still an eigenstate of L̂2 with eigenvalue l(l + 1), but that ∇2ȳm

l = 0.
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Figure D.2: Spherical harmonics of, from left to right, s, p, d, f , and g type. m quantum numbers
are increasing from the top and down.
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L l m ȳm
l = N ·f(x, y, z)

0 0 0
√

1/4π·1
1 1 -1

√
3/4π·y

2 1 0
√

3/4π·z
3 1 1

√
3/4π·x

4 2 -2
√

15/4π·xy
5 2 -1

√
15/4π·yz

6 2 0
√

5/16π·(3z2 − r2)
7 2 1

√
15/4π·xz

8 2 2
√

15/16π·(x2 − y2)
9 3 -3

√
35/32π·(3x2y − y3)

10 3 -2
√

105/4π·xyz
11 3 -1

√
21/32π·(5yz2 − yr2)

12 3 0
√

7/16π·(5z3 − 3zr2)
13 3 1

√
21/32π·(5xz2 − xr2)

14 3 2
√

105/16π·(x2z − y2z)
15 3 3

√
35/32π·(x3 − 3xy2)

16 4 -4
√

315/16π·(x3y − xy3)
17 4 -3

√
315/32π·(3x2yz − y3z)

18 4 -2
√

45/16π·(7xyz2 − xyr2)
19 4 -1

√
45/32π·(7yz3 − 3yzr2)

20 4 0
√

9/256π·(35z4 − 30z2r2)
21 4 1

√
45/32π·(7xz3 − 3xzr2)

22 4 2
√

45/64π·(7x2z2 − 7y2z2 − x2r2 + y2r2)
23 4 3

√
315/32π·(x3z − 3xy2z)

24 4 4
√

315/256π·(x4 + y4 − 6x2y2)

Table D.1: List of the first few real solid spherical harmonics in Cartesian form.
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Appendix E

Approximations of the
Exchange-Correlation Functional

The value of the density is in functionals often given in terms of the Seitz radius rs, or the Fermi
wave length kF . The Seitz radius, is the radius of the sphere, which for a homogeneous electron
gas would contain exactly one electron

r3s = 3/4πn

This gives a measure of the average distance between electrons.
The Fermi wave length is the energetically highest occupied plane wave in a homogeneous

electron gas
k3

F = 3π2n

The gradient of the density is usually measured in terms of either of

s =
|∇n|
2kFn

t =
|∇n|
2ksnφ

where ks =
√

4kF /π and

φ(ζ) =
1
2

[
(1 + ζ)2/3 + (1− ζ)2/3

]
(E.1)

ζ is the spin polarization defined as

ζ =
n↑ − n↓
n↑ + n↓

(E.2)

From the explicit expression for exact exchange, the exact spin scaling relation Ex[n↑, n↓] =
1
2Ex[2n↑] + 1

2Ex[2n↓] can be derived, and from this, it follows that for the homogeneous electron
gas

Ex[n↑, n↓] = Ex[n]
1
2

[
(1 + ζ)4/3 + (1− ζ)4/3

]
(E.3)

where Ex[n] = Ex[n/2, n/2] is the spin-compensated version of exchange. No exact spin scaling
relation exist for correlation.

E.1 Local spin density approximation

In the local spin density approximation (LSD), the exchange-correlation is approximated by

Exc[n↑, n↓] =
∫
drn(r)exc(n↑(r), n↓(r)) (E.4)
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where ex is the local exchange contribution of a homogeneous electron gas. For a spin saturated
system, this would be (see e.g. the section on Thomas-Fermi theory 3.2.1)

ex(n) = −3kF

4π
= − 3

4π
(3π2n)1/3 (E.5)

this can be generalized to arbitrary spin polarization using the spin-scaling relation (E.3).
The correlation energy density is only known for the (spin saturated) homogeneous gas in the

high-density (weak coupling) limit

ec(n) = c0 ln rs − c1 + c2rs ln rs − c3rs + . . .

with the constants c0 = (1− ln 2)/π2 ≈ 0.031091 and c1 = 0.046644, and in the low-density (strong
coupling) limit

ec(n) = −d0

rs
+

d1

r
3/2
s

+ . . .

where the two constants can be estimated by experimental techniques.
A parametrization, due to Perdew and Wang [18] which satisfy both limits is (other parame-

terizations are [15, 17, 16])

ec(n) = −2c0(1 + α1rs) ln

[
1 +

1

2c0(β1r
1/2
s + β2rs + β3r

3/2
s + β4r2s)

]
(E.6)

where

β1 =
1
c0
e−c1/2c0

β2 = 2c0β2
1

(E.7)

and the remaining parameters α1, β3, and β4 are fitted to results from quantum Monte-Carlo
simulations of the homogeneous electron gas [17]

α1 = 0.21376 β3 = 1.6382 β4 = 0.49294

This parametrization was for ec(n) = ec(n/2, n/2), i.e. the fully spin saturated case. For the fully
spin polarized case, ec(n↑, n↓) = ec(n, 0), the correlation energy density can be parametrized in
the exact same way as in (E.6), but with the changed constants

α1 = 0.20548 β3 = 3.3662 β4 = 0.62517

Using these two extreme cases, the correlation energy can be generalized to arbitrary spin, using
the Taylor expansion (due to [16])

ec(n↑, n↓) = ec(n) + αc(n)
f(ζ)
f ′′(0)

(1− ζ4) + [ec(n, 0)− ec(n)]f(ζ)ζ4 (E.8)

where
f(ζ) =

1
24/3 − 2

[
(1 + ζ)4/3 + (1− ζ)4/3 − 2

]
(E.9)

and αc(n) can be parametrized in the same way as (E.6) with the modified parameters

c0 = 0.016887
c1 = 0.035475
α1 = 0.11125
β3 = 0.88026
β4 = 0.49671

(E.10)

and β1 and β2 defined as before, (E.7).
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E.2 PBE, revPBE, and RPBE

The Perdew-Burke-Ernzerhof functional (PBE) [19], the revision by Zhang and Yang revPBE [21]
and by Hammer, Hansen and Nørskov RPBE [22] all use the correlation functional of PW91, in
which the correlation energy functional is written as

Ec[n↑, n↓] =
∫
drn(r) (ec(rs, ζ) +H(rs, ζ, t)) (E.11)

where ec(rs, ζ) is the local correlation functional of LSD, and

H(rs, ζ, t) = c0φ
3 ln

{
1 +

βMB

c0
t2
[

1 +At2

1 +At2 +A2t4

]}
(E.12)

where
A =

βMB

c0

1
e−ec(rs,ζ)/c0φ3 − 1

(E.13)

and βMB = 0.066725. The exchange functional is written as

Ex[n] =
∫
drn(r)ex(n)Fx(s) (E.14)

where the enhancement factor for PBE and revPBE is

Fx(s) = 1 + κ− κ

1 + µs2/κ
(E.15)

where µ = βMBπ
2/3 ≈ 0.21951 and

κ ≤ 0.804 (E.16)

to satisfy the Lieb-Oxford bound. Choosing κ = 0.804 one arrives at the PBE functional, choosing
κ = 1.245 we get the revPBE functional, and modifying the form of Fx to

Fx(s) = 1 + κ
(
1− eµs2/κ

)
(E.17)

and keeping κ at 0.804, one gets the RPBE functional.
The expression (E.14) is generalized to arbitrary spin in the same way as LSD, i.e. by multi-

plying with 1
2

[
(1 + ζ)4/3 + (1− ζ)4/3

]
.
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Appendix F

Forces in PAW

In the ground state, the forces on each nuclei can be calculated directly from

Fa = − dE

dRa

= − ∂E

∂Ra
−
∑

n

{
∂E

∂|ψ̃n〉
d|ψ̃n〉
dRa

+ h.c.

}

= − ∂E

∂Ra
−
∑

n

fnεn

{
〈ψ̃n|Ŝ

d|ψ̃n〉
dRa

+ h.c.

}

= − ∂E

∂Ra
+
∑

n

fnεn〈ψ̃n|
dŜ

dRa
|ψ̃n〉

(F.1)

where h.c. denotes the hermitian conjugate. To get to the second line, the chain rule has been
applied. The third line follows from the relation

∂E

∂〈ψ̃n|
= fn

̂̃
H|ψ̃n〉 = fnεnŜ|ψ̃n〉 (F.2)

The last line of (F.1) is obtained from the following manipulation of the orthogonality condition
(6.52)

δnm = 〈ψ̃n|Ŝ|ψ̃m〉

⇒ 0 =
d

dRa
〈ψ̃n|Ŝ|ψ̃m〉 =

d〈ψ̃n|
dRa

Ŝ|ψ̃m〉+ 〈ψ̃n|
dŜ

dRa
|ψ̃m〉+ 〈ψ̃n|Ŝ

d|ψ̃m〉
dRa

⇔ d〈ψ̃n|
dRa

Ŝ|ψ̃m〉+ h.c. = −〈ψ̃n|
dŜ

dRa
|ψ̃m〉

(F.3)

From the expression for the overlap operator (6.53), it follows that

dŜ

dRa
=
∑
i1i2

∆Sa
i1i2

(
d|p̃a

i1
〉

dRa
〈p̃a

i2 |+ h.c.

)
(F.4)

which, when inserted in (F.1), gives the force expression

Fa = − ∂E

∂Ra
+
∑

n

fnεn
∑
i1i2

∆Sa
i1i2

(
P a∗

ni1〈
dp̃a

i2

dRa
|ψ̃n〉+ 〈ψ̃n|

dp̃a
i1

dRa
〉P a

ni2

)
(F.5)
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Forces without exact exchange

In the absence of exact exchange, it is clear that the dependence of the total energy on the nuclei
coordinates follows from

∂E

∂Ra
=
∫
dr′

δE

δñ(r′)
∂ñ(r′)
∂Ra

+
∑
i1i2

∂E

∂Da
i1i2

∂Da
i1i2

∂Ra
+
∫
dr′
∑
L

δE

δg̃a
L(r′)

∂g̃a
L(r′)
∂Ra

=
∫
dr′ṽeff(r′)

∂ña
c (r′)
∂Ra

+
∑
i1i2

∆Ha
i1i2

∂Da
i1i2

∂Ra
+
∫
dr′
∑
L

uH(r′)QL
∂g̃a

L(r′)
∂Ra

(F.6)

giving the force expression

Fa = −
∫
dr′
{
ṽeff(r′)

∂ña
c (r′)
∂Ra

+ uH(r′)
∑
L

QL
∂g̃a

L(r′)
∂Ra

}

−
∑

n

fn

∑
i1i2

{
∆Ha

i1i2 − εn∆Sa
i1i2

}(
P a∗

ni1〈
dp̃a

i2

dRa
|ψ̃n〉+ 〈ψ̃n|

dp̃a
i1

dRa
〉P a

ni2

) (F.7)

Forces with exact exchange

When including exact exchange, the atomic Hamiltonian, ∆Ha
i1i2

is redefined in accordance with
the procedure described in section 6.8. In addition, we get the force contribution

Fa
xx = −

∑
n1n2

∫
dr′

δẼxx

δZ̃a
n1n2

(r′)

∂Z̃a
n1n2

(r′)
∂Ra

(F.8)

The first partial derivative gives

δẼxx

δZ̃a
n1n2

(r)
= fn1fn2δσn1σn2

ṽn1n2(r) (F.9)

and the second gives

∂Z̃a
n1n2

(r)
∂Ra

=
∑
L

∑
i1i2

∆Li1i2

(
P a∗

n1i1P
a
n2i2

∂g̃a
L(r)
∂Ra

+ g̃a
L(r)

∂P a∗
n1i1

P a
n2i2

∂Ra

)
(F.10)

resulting in the force

Fa
xx = −

∑
n1n2

fn1fn2δσn1σn2

{∫
dr′ṽn1n2(r

′)
∑
i1i2

P a∗
n1i1P

a
n2i2

∑
L

∆Li1i2

∂g̃a
L(r′)
∂Ra

+
∑
i1i2

va
n1n2i1i2

(
P a∗

n1i1〈
dp̃a

i2

dRa
|ψ̃n2〉+ 〈ψ̃n1 |

dp̃a
i1

dRa
〉P a

n2i2

)} (F.11)

Note that these equations, (F.7) and (F.11), are only valid in the ground state. For a derivation
of a force theorem in PAW, when one is not in the ground state, see [25].



Appendix G

The External Potential in PAW

The energy associated with the external potential vext(r) is

Eext =
∫
drn(r)vext(r)

=
∫
drñ(r)vext(r) +

∑
a

∫
dr [na(r)− ña(r)] vext(r)

I.e. we must add the pseudo energy contribution

Ẽext =
∫
drñ(r)vext(r)

and the atomic corrections:

∆Ea
ext =

∫
dr [na(r)− ña(r)] vext(r)

to the total energy.
In PAW, the Hamiltonian has the structure:

H =
1

fn|ψn〉
∂E

∂〈ψn|
= H̃ +

∑
a

∑
i1i2

|p̃a
i1〉∆H

a
i1i2〈p̃

a
i2 |

In our case, the extra contributions due to the external potential are:

H̃ext(r) = vext(r)

and
∆Ha,ext

i1i2
=
∫
drvext(r)

{
φa

i1(r)φ
a
i2(r)− φ̃a

i1(r)φ̃
a
i2(r)

}
(G.1)

Thus we can write the atomic energy contribution as:

∆Ea
ext =

∫
drvext(r)

[
na

c (r)− ña
c (r) +

∑
i1i2

Da
i1i2

{
φa

i1(r)φ
a
i2(r)− φ̃a

i1(r)φ̃
a
i2(r)

}]

=
∫
drvext(r) [na

c (r)− ña
c (r)] +

∑
i1i2

Da
i1i2∆H

a,ext
i1i2

Computing all the elements of (G.1) can be time-consuming, as the external potential has to be
expanded in som radial function at each nuclei. Making the assumption

vext(r) ≈ vext(Ra) , for |r−Ra| < ra
c
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We can reuse existing matrix elements from the expansion coefficients of the compensation charges,
to get:

∆Ea
ext = vext(Ra)(

√
4πQa

00 + Za)

∆Ha,ext
i1i2

= vext(Ra)
√

4π∆a
00,i1i2


	Front
	Preface
	Abstract
	Resumé
	Contents
	1 Introduction
	2 Basic Wave Function Theory
	2.1 The Many-Body Problem
	2.2 Wave Functions and Their Interpretation
	2.2.1 One and Two Particle Density Operators

	2.3 The Non-Interacting Many-Body Problem
	2.4 Spin

	3 Density Functional Theory
	3.1 Hohenberg-Kohn Theory
	3.2 The Generalized Kohn-Sham Scheme
	3.2.1 Choosing the Model System
	3.2.2 Comparison of KS and hybrid HF-KS Schemes

	3.3 Exchange and Correlation
	3.3.1 Jacob's Ladder
	3.3.2 The Adiabatic Connection Formula
	3.3.3 Hybrid Functionals: Rationale for Admixture of Exact Exchange


	4 Extended Systems
	4.1 Bloch Theory
	4.2 Basis Sets and Boundary Conditions

	5 Orbital Dependent Functionals
	5.1 Direct Functional Derivative The Non-local Hartree-Fock Potential
	5.2 Optimized Effective Potential
	5.3 Approximations to the Optimized Potential Method
	5.4 Screened Exchange
	5.5 Conclusion

	6 Projector Augmented Wave Method
	6.1 The Transformation Operator
	6.2 The Frozen Core Approximation
	6.3 Expectation Values
	6.4 Densities
	6.5 Total Energies
	6.5.1 The Semi-local Contributions
	6.5.2 The Nonlocal Contributions
	6.5.3 Summary

	6.6 The Transformed Kohn-Sham Equation
	6.6.1 Orthogonality
	6.6.2 The Hamiltonian

	6.7 Exact Exchange in PAW
	6.7.1 Exact Exchange Energy
	6.7.2 The Exact Exchange Potential

	6.8 Summary

	7 Implementing PAW
	7.1 Atoms
	7.1.1 The Radial Kohn-Sham Equation
	7.1.2 Exact Exchange

	7.2 The Atomic Data Set of PAW

	8 Numerical Results
	8.1 Isolated Atoms
	8.2 Molecules
	8.3 Miscellaneous
	8.3.1 The Poisson Equation


	9 Conclusion
	References
	Appendices
	A Exact Exchange
	B Wannier Functions and Exact Exchange
	C Fourier Transform
	C.1 Finite Volume - Discrete k
	C.2 Infinite Volume - Continuous k

	D Multipoles and Spherical Harmonics
	D.1 Spherical polar coordinates
	D.2 Multipole Expansion
	D.3 Spherical Harmonics

	E Approximations of the Exchange-Correlation Functional
	E.1 Local spin density approximation
	E.2 PBE, revPBE, and RPBE

	F Forces in PAW
	G The External Potential in PAW

