Electronic structure calculations with the GPAW code

PAW!

@ Pseudo-potentials

@ Projector Augmented Wave method
o The theory
e Approximations

o GPAW
@ Running calculations with ASE and GPAW
e Finite-difference, LCAO and plane waves
o lterative diagonalization
e Scaling with system size



Pseudo-potentials

Si-atom

@ Chemical properties are
determined largely by 10
valence electrons

@ Strong Coulomb potential of
nuclei leads to sharply
varying wave functions
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@ Replace the real potential
with a pseudo-potential
reproducing the correct
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Local pseudo-potential for silicon

Appelbaum-Hamann' potential (v4 = 3.042, v, = —1.372,
a =0.6102):

Van(r) = (vi + vor®)e %" —gerf(\/ar)/r

.
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1Joel A. Appelbaum and D. R. Hamann, PRB 8, 1777 (1973)



Non-local PP’s

@ Kleinman-Bylander? separable form:

V= \A/Iocal + Z ISVZm> <5V€m’

Im

e Ultra-soft PP’s®: Pseudo wave functions need not be normalized -
this allows for ultra-soft wave functions

2Leonard Kleinman and D. M. Bylander. Efficacious form for model
pseudo-potentials. Phys. Rev. Lett. 48 (20), 1425 (May 1982).

3David Vanderbilt. Soft self-consistent pseudo-potentials in a generalized
eigenvalue formalism. Phys. Rev. B 41 (11), 7892 (April 1990).



Projector Augmented Wave method

@ Access to full all-electron wave-functions, density and potential
@ An exact all-electron formalism

@ Pseudo-potentials done right. PAW contains USPP and NCPP
theory

The PAW method was invented by Peter Bléchl in 1994:

@ "Projector augmented-wave method", P. E. Bléchl, Phys. Rev. B
50, 17953 (1994)

@ "Projector augmented wave method: ab initio molecular dynamics

with full wave functions", P. E. Bléchl, C. J. Férst and J. Schimpl,
Bull. Mater. Sci, 26, 33 (2003)



The PAW transformation

The PAW transformation maps nice and smooth wave functions to
all-electron wave functions with cusps and nasty oscillatory behavior
near the nucleus:

ll/n(_f) = %‘IN/n(7)

ZZ(I(P, —167) (B

Projector functions: p2, (F) =0 for r > rg.

All-electron partial waves: ¢, (7).

Pseudo partial waves: 2, (F) = ¢2, (F) for r > r2.
<q3r?em|:5ﬁ/£/m'> = Sprr Ove Sy

Yt |02, (B2, = 1 for r < r2 (completeness relation)

Fixed points for the transformation:

%(i)'ia = ia



Platinum dataset

Partial Waves Projectors
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Note
The pseudo 5d is not normalized




Platinum 6s orbital
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PAW theory

W) = W) + X Y (107) — 167)) (BF | Wn)

Take any local or semi-local operator o) (the kinetic energy, a local
potential, the electron density ...):

(Wnl Ol wn) = (Wn| Ol Win) + Y (Winl B7) ({071 — (871 O(19) — 197)) (BF ) +

abij
Y (@l O(197) = 67)) (B rm) +c.c.)

Use that (¢7| — (¢?| = 0 outside the augmentation sphere of atom a
and use this expansion inside the spheres: |{,) = Y.;|07) (b7 ¥n):

(Wn|Olwn) = (§n| O1Wn) + Y (Wal 57) (9] 01977 — (97| OI 7)) (Bf | W)

ajj



Atomic density matrix

From last slide:

<‘Vn‘owfn> <‘/’n|o“lfn +Z WnlBF) <¢ia‘©’¢ja>_<€5ia|©|q;ja>)<l3ﬂ‘l7n>-

ajj

Often, we are interested in ¥, f,(w,| O| ,,). We introduce the atomic
density matrix:

Di? = Z<V~/n|ﬁf>fn<bja|17/n>

n

We now have:

Y fn(wn|Olyn) an ol OlWm) + ) DF((97[O167) — (6710197)).

aij



Kinetic energy

Eiin = Eain+ Y (Ed, — ES,),
a

where

Ekln—__zfn/d—) VZ‘Vn

core

Z / drP2vVe o2

Bl =, L0} [ aréveiy

1
B2 — —EZD;]?/d"q)aVZ
i



Electron density

With frozen core density n?(a) and pseudo core density n2(r) = nZ(r)
for r < rg we have:
n® =) Diof¢7+ni,
-
ne = Z b Nia‘lsja + g,

if
h= Zf,7|1/"/,7|2 +Zr"7§,
n a
Finally, we get a very simple expression for the all-electron density:

n= Fl—i—Z(na—ﬁa)




Exchange-correlation energy

Fro semi-local functionals:

Exc = Exc + Z(E)fc - Efc)v
a

where
Evo— / dFFiesol 7]
E2 = / AP reye|n]
r<ré
E2 = / AP Pey[]
r<rg
Note
The densities n? and n? are not necessarily spherically symmet-
ric!
Note
No non-linear core correction needed - PAW does the right thing!




The Coulomb energy

Let Z4(F) be the nuclear charge for atom a. The Coulomb energy is:

)+ 522~ ) (n(F) + £a Z°(F — F)
=7

= (n—l—ZZ"”)2

= (At Y [n" 7"+ 2°])°

EC — %/d?d?/ (n(r

We add and subtract compensation charges localized inside the
augmentation spheres:

Eo = (A+ Y 2%+ Y[ — 7+ 22— 222
a a



The Coulomb energy (continued)

The compensation charges are constructed like this:
Z amg?m —‘
where g7t (F) = 0 for r > rZ:

g (F) = Cor exp(—aarz) Yem(7),

The Q7 '’s are chosen such that n? — n? + 2% — Z2 has no multipole
moments:

/ AP Yy () (n? — 7 4 28— 2%) = 0



Finally ...

Using p = A+ Y22 p? = A2+ 2% and p? = n?+ Z2, we get:
Ec=(h+),2%+) [n" -+ 27— Z%))?
a a
=+ Xl
=5*+25 (0" + L ("~ (0"~ 5"
Since p? — p@ has no multipole moments, we get:
Ec=p"+ 2Za)ﬁa(pa -p9) +Za)(pa —p7)?

=P+ L7 - L)



Electrostatic energy

Z (p?)? — Z EC+Z(EC EZ)

a a
p(F)A(F)
/ aa? PP
1) Solve Poisson equation:
VZVH:—47L'[3
= 1 /d?V ~
= 2 HP

2) Fourier transform:

Ec= Z|P /G



PAW energy and Hamiltonian

Total energy:

E = Ein+ Ec+ Exc+ ) AE*(D]) = E[{Wn}] + ) AE*(D])
a a
Hamiltonian (SE /87 = f,Hr,):

= ——V2+v+ZZ\p, YAHZ (B

a jj
where ¥ = §E/8A = M 4 T and

AE H
AHj = D3 +Z aDa /w

(the PAW method is a generalized Kleinman-Bylander non-local
pseudo-potential that adapts to the current environment)




Orthogonality

Keep the wave functions orthogonal:

Onm = (Wn|Wm) = <‘I’n|7 T Wm) = <‘I~fn|§|‘l~/m>a

where

§=t"t=1+Y Y ") ASH(ES|
a j
and

A Sa / ( ¢/ (pj éia q“)'ja )

We need to solve:
lefn = 8nSl'Iv/n



Summary of approximations

@ Frozen core states

@ Finite number of projectors, partial waves and pseudo partial
waves
@ Overlapping augmentation spheres

@ Standard DFT stuff:

e Occupation number smearing
@ Kk-point sampling.
e XC-functional



Running a calculations with ASE and GPAW

from ase import Atoms

h2 = Atoms (...)

from ase.calculators.emt import EMT
h2.calc = EMT ()
h2.get_potential_ energy ()

from ase.optimize import BFGS

opt = BFGS (h2)

opt.run (fmax=0.05)

h2.get_forces|()

from gpaw import GPAW, PW

h2.calc = GPAW (mode=PW (300), txt="h2.txt’)
h2.center (vacuum=2)

h2.cell

h2.get_forces ()

from ase.visualize import view
view (h2)



More ASE stuff

Alternative to Atoms (.. .):

from ase.structure import molecule
h2 = molecule(’H2")

or:

from ase.io import read
h2 read ("H2.xyz")

@ Thereis also a bulk () function and, and, and ...

@ Use ASE’s GUI called ase—gui. It understands the same
file-formats as ASE’s read () function: GPAW'’s text output,

.gpw files, ASE’s .t raj files and many mode.



What is GPAW?

An implementation of the PAW method

Wave functions are described using
1) real-space uniform grids (fd)
2) atom-centered numerical basis functions (Icao)
3) plane-waves (pw)

It's written in a combination of the Python and C languages

It's based on ASE and NumPy (a Python library for manipulating
N-dimensional arrays of numbers)
It uses these libraries for the hard work:

BLAS (GPAW does a lot of matrix-matrix multiplications)

e LAPACK and optionally ScaLAPACK and BLACS

e MPI (if you want to run GPAW in parallel)

e FFTW (if you want to do fast plane-wave based calculations)
e LIBXC (for LDA’'s, GGA’s and MGGA’s)

@ The license is GPLv3+



Finite-difference mode

Describe wave functions, electron density and the effective potential in
real-space on uniform grids:

Fivipis = (i1 /Ny)@y + (lo/N2)az + (ia/ Na) s,

where a1, & and &z are the unit cell vectors and we use Ny x No X N3
grid points (i = 0,1,..., Ny — 1).

Use finite-difference approximation for V2 and iterative multi-grid
based solvers for the Poisson and Kohn-Sham equations.

92f(x)

N
——> =Y. Clf(x+nh)+ O(K*N*?)
(9X n=—N



Finite difference

() *
\/+

Advantages:
@ It's simple! Only one parameter (grid-spacing).

@ No FFT’s. Easy to parallelize using domain decomposition - only
neighbor-neighbor communication.

Disadvantages:
@ You need many grid-points.



Blue Gene/P
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Gold clusters: AU561 and AU1028440880308H220. Important to
parallelize (Ne x Ng) matrix operations (ScaLAPACK) and parallelize
over states.

Note
Don’t use this many cores for the exercises!




LCAO mode

Expand wave function in numerical atom-centered atomic-like orbitals
with finite support:

IIN/ = Z Z Cﬁémcbiém(_f - ,‘;‘;a).

a nfm

@ The atomic orbitals are obtained from a free atom in a confining
potential well

@ Extra basis functions with the same angular momentum

@ Polarization functions

@ Same PAW approximation as with real-space grids
Advantages:

° <bia’¢#f’m/> < nﬁm’q)n’f’ /> and ( ném|v2’¢n'£’ ’> can be

calculated exactly

@ One can do quick’'n’dirty calculations
Disadvantages:

@ Hard to reach complete basis-set limit.



Plane wave basis set

It's based on FFT and does the projector wave function overlaps in
reciprocal space with ZGEMM.
Advantages:

@ Fast for not too large systems

@ Fast convergence with respect to number of plane-waves

Disadvantages:
@ not so flexible boundary conditions

@ delocalized basis functions



lterative diagonalization algorithm (FD and PW mode)

F’ Nn = 8nél/“/n

1

2) Orthogonalize wave functions (make sure <l/"/,,\§|l/”fm) = Opm)

3) Calculate density, mix* and interpolate to finer grid (A, D;-]?)

4

5) Apply Hamiltonian (H,)

6) Subspace diagonalization (rotate y/, so that
<‘I7n“:/"/7m> = OpmEn)

7) Calculate residuals (R, = H{7, — £,5,)

8) Improve wave functions* ({r, + APR, — W)

9) Backto (2)

Initial guess for wave functions from LCAO ()

Calculate potential (v, AH,.;’)

)
)
)
)
)
)

4G. Kresse, J. Furthmiiller: Phys. Rev. B 54, 11169 - 11186 (1996) "Efficient
iterative schemes for ab initio total-energy calculations using a plane-wave basis set"



Scaling with system size N: FD-mode and PW-mode

@ Number of atoms: N5 ~ 100
@ Number of electrons: Ny ~ 500
@ Number of grid points or plane waves: Ny ~ 100,000

Linearly scaling parts of the code:
@ Coulomb energy:

o FD: (Poisson equation) Ny
o PW: (direct method) Ny log Ny

@ Exchange-correlation energy and potential: Ny
@ Density mixing: Ny



Scaling with system size N (continued)

Quadratic:
@ Evaluation of projections (pZ|Wy):
o FD: NN,
o PW: NaNoN,

@ Calculation of — V2, and ¥,:

o FD: NpN,
o PW: NNylog Ny

@ Pseudo density i1 =Y., fo| Wn|? 4+ X, 12 NeNg
Cubic:

@ Orthogonalization of wave functions: NgNg (Shr)

@ Subspace diagonalization: N2Ng (Hny)

@ (Ng x Ng)-matrix operations: N3



GPAW'’s datasets

We have generated datasets (¢?, ¢7,-a, P2, n, ng, v?) for most elements,
but:

Important

it's up to you to test them!

@ Do test calculations an compare to reference numbers

$ gpaw—-setup Si —-f BLYP # dataset for BLYP-Si
$ gpaw—-setup Si -r 2.0 # change cutoff
$ gpaw—setup -h # HELP!



Exercises

@ Surface energy, diffusion, band structure, Wannier functions,
NEB, magnetism, DOS, STM, databases, vibrations, stress
tensor, transport, TDDFT.

@ EELS, GW and RPA correlation: For these exercises you need
the density response function: x34 (a, @)
1. Do a ground-state calculation
2. Fixed potential and set up Hamiltonian and overlap
matrices
3. Find all eigenvectors using (Sca)Lapack

from gpaw import GPAW

calc = GPAW(’abc.gpw’, txt=None)
calc.diagonalize_full hamiltonian (nbands=...)
calc.write(’abc.all.gpw’, ’'all’)



SGPAW_SETUP_PATH:

PAW-datasets (H. LDA. gz, He.LDA. gz, ...) also contains
PBE, revPBE, RPBE, GLLBSC and LCAOQO basis functions.

SPYTHONPATH:

@ The ASE code.
@ The GPAW code.
@ __gpaw.so: GPAW’s C-extensions for Python.

SPATH:

@ gpaw-python: MPIl-enabled Python interpreter with
GPAW'’s C-code inside.



Finally ...

@ Check out:
@ http://wiki.fysik.dtu.dk/ase
@ http://wiki.fysik.dtu.dk/gpaw
@ Thanks to the GPAW-team:
Andre, Ari, Arto, Ask, Carsten, Chris, Christian, David, Duncan,
Elvar, Falco, Filip, Georg, George, Haiping, Heine, Henrik, Hildur,
Ivano, Jakob, Janosch, Jeppe, Jess S.-M., Jess W. P, Jingzhe,
Juan Maria, Jun, Jussi, Keld, Kirsten, Kristen, Kristian, Lara,
Lauri, Mads, Marcin, Marco, Mathias, Mikael, Michael, Mikkel,
Mohnish, Morten, Nick, Olga, Ondrej, Per, Peter, Poul Georg,
Rolf, Samuli, Simone, Thomas, Torsten, Troels, Tuomas and
Vivien
@ Talk to us on the #gpaw channel on irc.freenode.net or on our
mailing lists: gpaw—developers, ase—-developers,
gpaw—users and ase—users.

@ Thank you for your attention
@ Questions?


http://wiki.fysik.dtu.dk/ase
http://wiki.fysik.dtu.dk/gpaw

Extra material



The egg-box effect

Translation of hydrogen in empty space with h =0.19 A:

— Filtered ||
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Fourier filtering® of p; and v:
@ Fourier transform p;(r)/m(r), where m(r) is a mask function that
goes smoothly to zero at a chosen cutoff radius.
@ Cut off high frequency components.
@ Transform back and multiply by m(r).

5Mask-function real-space implementations of nonlocal pseudo-potentials, Phys.
Rev. B 64, 201107(R) Published 6 November 2001, Lin-Wang Wang



PAW atomic datasets in one slide

Solve (—%V-{— V—€n)Pne =0

Construct (]3,,g: smooth continuation of @, for r < r¢

Construct n.: smooth continuation of core density n, for r < r,,
A= e+ Yo fud?

p=h+Qe " [drp=0

Construct ¥ somehow (several possibilities)

Calculate projector functions: pjy o< (—%V + 7 — €2 Ot
Unscreen: v=v— [drp(r)/|r—¥| — w[7]
Add more projectors

Check logarithmic derivatives and pseudo-atom eigenvalues



