Source code for ase.optimize.mdmin

from typing import IO, Optional, Union

import numpy as np

from ase import Atoms
from ase.optimize.optimize import Optimizer


[docs] class MDMin(Optimizer): # default parameters defaults = {**Optimizer.defaults, 'dt': 0.2} def __init__( self, atoms: Atoms, restart: Optional[str] = None, logfile: Union[IO, str] = '-', trajectory: Optional[str] = None, dt: Optional[float] = None, maxstep: Optional[float] = None, **kwargs, ): """ Parameters ---------- atoms: :class:`~ase.Atoms` The Atoms object to relax. restart: str JSON file used to store hessian matrix. If set, file with such a name will be searched and hessian matrix stored will be used, if the file exists. trajectory: str Trajectory file used to store optimisation path. logfile: str Text file used to write summary information. dt: float Time step for integrating the equation of motion. maxstep: float Spatial step limit in Angstrom. This allows larger values of dt while being more robust to instabilities in the optimization. kwargs : dict, optional Extra arguments passed to :class:`~ase.optimize.optimize.Optimizer`. """ Optimizer.__init__(self, atoms, restart, logfile, trajectory, **kwargs) self.dt = dt or self.defaults['dt'] self.maxstep = maxstep or self.defaults['maxstep'] def initialize(self): self.v = None def read(self): self.v, self.dt = self.load() def step(self, forces=None): optimizable = self.optimizable if forces is None: forces = optimizable.get_forces() if self.v is None: self.v = np.zeros((len(optimizable), 3)) else: self.v += 0.5 * self.dt * forces # Correct velocities: vf = np.vdot(self.v, forces) if vf < 0.0: self.v[:] = 0.0 else: self.v[:] = forces * vf / np.vdot(forces, forces) self.v += 0.5 * self.dt * forces pos = optimizable.get_positions() dpos = self.dt * self.v # For any dpos magnitude larger than maxstep, scaling # is <1. We add a small float to prevent overflows/zero-div errors. # All displacement vectors (rows) of dpos which have a norm larger # than self.maxstep are scaled to it. scaling = self.maxstep / (1e-6 + np.max(np.linalg.norm(dpos, axis=1))) dpos *= np.clip(scaling, 0.0, 1.0) optimizable.set_positions(pos + dpos) self.dump((self.v, self.dt))