"""Effective medium theory potential."""
from collections import defaultdict
from math import log, sqrt
import numpy as np
from ase.calculators.calculator import (
Calculator,
PropertyNotImplementedError,
all_changes,
)
from ase.data import atomic_numbers, chemical_symbols
from ase.neighborlist import NeighborList
from ase.units import Bohr
parameters = {
# E0 s0 V0 eta2 kappa lambda n0
# eV bohr eV bohr^-1 bohr^-1 bohr^-1 bohr^-3
'Al': (-3.28, 3.00, 1.493, 1.240, 2.000, 1.169, 0.00700),
'Cu': (-3.51, 2.67, 2.476, 1.652, 2.740, 1.906, 0.00910),
'Ag': (-2.96, 3.01, 2.132, 1.652, 2.790, 1.892, 0.00547),
'Au': (-3.80, 3.00, 2.321, 1.674, 2.873, 2.182, 0.00703),
'Ni': (-4.44, 2.60, 3.673, 1.669, 2.757, 1.948, 0.01030),
'Pd': (-3.90, 2.87, 2.773, 1.818, 3.107, 2.155, 0.00688),
'Pt': (-5.85, 2.90, 4.067, 1.812, 3.145, 2.192, 0.00802),
# extra parameters - just for fun ...
'H': (-3.21, 1.31, 0.132, 2.652, 2.790, 3.892, 0.00547),
'C': (-3.50, 1.81, 0.332, 1.652, 2.790, 1.892, 0.01322),
'N': (-5.10, 1.88, 0.132, 1.652, 2.790, 1.892, 0.01222),
'O': (-4.60, 1.95, 0.332, 1.652, 2.790, 1.892, 0.00850)}
beta = 1.809 # (16 * pi / 3)**(1.0 / 3) / 2**0.5, preserve historical rounding
[docs]
class EMT(Calculator):
"""Python implementation of the Effective Medium Potential.
Supports the following standard EMT metals:
Al, Cu, Ag, Au, Ni, Pd and Pt.
In addition, the following elements are supported.
They are NOT well described by EMT, and the parameters
are not for any serious use:
H, C, N, O
Parameters
----------
asap_cutoff : bool, default: False
If True the cutoff mimics how ASAP does it; most importantly the global
cutoff is chosen from the largest atom present in the simulation.
If False it is chosen from the largest atom in the parameter table.
True gives the behaviour of ASAP and older EMT implementations,
although the results are not bitwise identical.
Notes
-----
Formulation mostly follows Jacobsen *et al*. [1]_
`Documentation in ASAP can also be referred to <https://gitlab.com/asap/
asap/blob/master/docs/manual/potentials/emt.pdf>`_.
.. [1] K. W. Jacobsen, P. Stoltze, and J. K. Nørskov,
Surf. Sci. 366, 394 (1996).
"""
implemented_properties = ['energy', 'free_energy', 'energies', 'forces',
'stress', 'magmom', 'magmoms']
nolabel = True
default_parameters = {'asap_cutoff': False}
def __init__(self, **kwargs):
Calculator.__init__(self, **kwargs)
def initialize(self, atoms):
self.rc, self.rc_list, self.acut = self._calc_cutoff(atoms)
numbers = atoms.get_atomic_numbers()
# ia2iz : map from idx of atoms to idx of atomic numbers in self.par
unique_numbers, self.ia2iz = np.unique(numbers, return_inverse=True)
self.par = defaultdict(lambda: np.empty(len(unique_numbers)))
for i, Z in enumerate(unique_numbers):
sym = chemical_symbols[Z]
if sym not in parameters:
raise NotImplementedError(f'No EMT-potential for {sym}')
p = parameters[sym]
s0 = p[1] * Bohr
eta2 = p[3] / Bohr
kappa = p[4] / Bohr
gamma1, gamma2 = self._calc_gammas(s0, eta2, kappa)
self.par['Z'][i] = Z
self.par['E0'][i] = p[0]
self.par['s0'][i] = s0
self.par['V0'][i] = p[2]
self.par['eta2'][i] = eta2
self.par['kappa'][i] = kappa
self.par['lambda'][i] = p[5] / Bohr
self.par['n0'][i] = p[6] / Bohr**3
self.par['inv12gamma1'][i] = 1.0 / (12.0 * gamma1)
self.par['neghalfv0overgamma2'][i] = -0.5 * p[2] / gamma2
self.chi = self.par['n0'][None, :] / self.par['n0'][:, None]
self.energies = np.empty(len(atoms))
self.forces = np.empty((len(atoms), 3))
self.stress = np.empty((3, 3))
self.deds = np.empty(len(atoms))
self.nl = NeighborList([0.5 * self.rc_list] * len(atoms),
self_interaction=False, bothways=True)
def _calc_cutoff(self, atoms):
"""Calculate parameters of the logistic smoothing function etc.
The logistic smoothing function is given by
.. math:
w(r) = \\frac{1}{1 + \\exp a (r - r_\\mathrm{c})}
Returns
-------
rc : float
"Midpoint" of the logistic smoothing function, set to be the mean
of the 3rd and the 4th nearest-neighbor distances in FCC.
rc_list : float
Cutoff radius for the neighbor search, set to be slightly larger
than ``rc`` depending on ``asap_cutoff``.
acut : float
"Slope" of the smoothing function, set for the smoothing function
value to be ``1e-4`` at the 4th nearest-neighbor distance in FCC.
Notes
-----
``maxseq`` is the present FCC Wigner-Seitz radius. ``beta * maxseq``
(`r1nn`) is the corresponding 1st nearest-neighbor distance in FCC.
The 2nd, 3rd, 4th nearest-neighbor distances in FCC are given using
``r1nn`` by ``sqrt(2) * r1nn``, ``sqrt(3) * r1nn``, ``sqrt(4) * r1nn``,
respectively.
"""
numbers = atoms.get_atomic_numbers()
if self.parameters['asap_cutoff']:
relevant_pars = {
symb: p
for symb, p in parameters.items()
if atomic_numbers[symb] in numbers
}
else:
relevant_pars = parameters
maxseq = max(par[1] for par in relevant_pars.values()) * Bohr
r1nn = beta * maxseq # 1st NN distance in FCC
rc = r1nn * 0.5 * (sqrt(3.0) + 2.0) # mean of 3NN and 4NN dists.
r4nn = r1nn * 2.0 # 4NN distance in FCC
eps = 1e-4 # value at r4nn, should be small
# "slope" is set so that the function value becomes eps at r4nn
acut = log(1.0 / eps - 1.0) / (r4nn - rc)
rc_list = rc * 1.045 if self.parameters['asap_cutoff'] else rc + 0.5
return rc, rc_list, acut
def _calc_gammas(self, s0, eta2, kappa):
n = np.array([12, 6, 24]) # numbers of 1, 2, 3NN sites in fcc
r = beta * s0 * np.sqrt([1.0, 2.0, 3.0]) # distances of 1, 2, 3NNs
w = 1.0 / (1.0 + np.exp(self.acut * (r - self.rc)))
x = n * w / 12.0
gamma1 = x @ np.exp(-eta2 * (r - beta * s0))
gamma2 = x @ np.exp(-kappa / beta * (r - beta * s0))
return gamma1, gamma2
def calculate(self, atoms=None, properties=['energy'],
system_changes=all_changes):
Calculator.calculate(self, atoms, properties, system_changes)
if 'numbers' in system_changes:
self.initialize(self.atoms)
self.nl.update(self.atoms)
self.energies[:] = 0.0
self.forces[:] = 0.0
self.stress[:] = 0.0
self.deds[:] = 0.0
natoms = len(self.atoms)
# store nearest neighbor info for all the atoms
# suffixes 's' and 'o': contributions from self and the other atoms
ps = {}
for a1 in range(natoms):
a2, d, r = self._get_neighbors(a1)
if len(a2) == 0:
continue
w, dwdroverw = self._calc_theta(r)
dsigma1s, dsigma1o = self._calc_dsigma1(a1, a2, r, w)
dsigma2s, dsigma2o = self._calc_dsigma2(a1, a2, r, w)
ps[a1] = {
'a2': a2,
'd': d,
'r': r,
'invr': 1.0 / r,
'w': w,
'dwdroverw': dwdroverw,
'dsigma1s': dsigma1s,
'dsigma1o': dsigma1o,
'dsigma2s': dsigma2s,
'dsigma2o': dsigma2o,
}
# deds is computed in _calc_e_c_a2
# since deds for all the atoms are used later in _calc_f_c_a2,
# _calc_e_c_a2 must be called beforehand for all the atoms
for a1, p in ps.items():
a2 = p['a2']
dsigma1s = p['dsigma1s']
self._calc_e_c_a2(a1, dsigma1s)
for a1, p in ps.items():
a2 = p['a2']
d = p['d']
invr = p['invr']
dwdroverw = p['dwdroverw']
dsigma1s = p['dsigma1s']
dsigma1o = p['dsigma1o']
dsigma2s = p['dsigma2s']
dsigma2o = p['dsigma2o']
self._calc_fs_c_a2(a1, a2, d, invr, dwdroverw, dsigma1s, dsigma1o)
self._calc_efs_a1(a1, a2, d, invr, dwdroverw, dsigma2s, dsigma2o)
# subtract E0 (ASAP convention)
self.energies -= self.par['E0'][self.ia2iz]
energy = np.add.reduce(self.energies, axis=0)
self.results['energy'] = self.results['free_energy'] = energy
self.results['energies'] = self.energies
self.results['forces'] = self.forces
if self.atoms.cell.rank == 3:
self.stress = (self.stress + self.stress.T) * 0.5 # symmetrize
self.stress /= self.atoms.get_volume()
self.results['stress'] = self.stress.flat[[0, 4, 8, 5, 2, 1]]
elif 'stress' in properties:
raise PropertyNotImplementedError
def _get_neighbors(self, a1):
positions = self.atoms.positions
cell = self.atoms.cell
neighbors, offsets = self.nl.get_neighbors(a1)
offsets = np.dot(offsets, cell)
d = positions[neighbors] + offsets - positions[a1]
r = np.sqrt(np.add.reduce(d**2, axis=1))
mask = r < self.rc_list
return neighbors[mask], d[mask], r[mask]
def _calc_theta(self, r):
"""Calculate cutoff function and its r derivative"""
w = 1.0 / (1.0 + np.exp(self.acut * (r - self.rc)))
dwdroverw = self.acut * (w - 1.0)
return w, dwdroverw
def _calc_dsigma1(self, a1, a2, r, w):
"""Calculate contributions of neighbors to sigma1"""
s0s = self.par['s0'][self.ia2iz[a1]]
s0o = self.par['s0'][self.ia2iz[a2]]
eta2s = self.par['eta2'][self.ia2iz[a1]]
eta2o = self.par['eta2'][self.ia2iz[a2]]
chi = self.chi[self.ia2iz[a1], self.ia2iz[a2]]
dsigma1s = np.exp(-eta2o * (r - beta * s0o)) * chi * w
dsigma1o = np.exp(-eta2s * (r - beta * s0s)) / chi * w
return dsigma1s, dsigma1o
def _calc_dsigma2(self, a1, a2, r, w):
"""Calculate contributions of neighbors to sigma2"""
s0s = self.par['s0'][self.ia2iz[a1]]
s0o = self.par['s0'][self.ia2iz[a2]]
kappas = self.par['kappa'][self.ia2iz[a1]]
kappao = self.par['kappa'][self.ia2iz[a2]]
chi = self.chi[self.ia2iz[a1], self.ia2iz[a2]]
dsigma2s = np.exp(-kappao * (r / beta - s0o)) * chi * w
dsigma2o = np.exp(-kappas * (r / beta - s0s)) / chi * w
return dsigma2s, dsigma2o
def _calc_e_c_a2(self, a1, dsigma1s):
"""Calculate E_c and the second term of E_AS and their s derivatives"""
e0s = self.par['E0'][self.ia2iz[a1]]
v0s = self.par['V0'][self.ia2iz[a1]]
eta2s = self.par['eta2'][self.ia2iz[a1]]
lmds = self.par['lambda'][self.ia2iz[a1]]
kappas = self.par['kappa'][self.ia2iz[a1]]
inv12gamma1s = self.par['inv12gamma1'][self.ia2iz[a1]]
sigma1 = np.add.reduce(dsigma1s)
ds = -1.0 * np.log(sigma1 * inv12gamma1s) / (beta * eta2s)
lmdsds = lmds * ds
expneglmdds = np.exp(-1.0 * lmdsds)
self.energies[a1] += e0s * (1.0 + lmdsds) * expneglmdds
self.deds[a1] += -1.0 * e0s * lmds * lmdsds * expneglmdds
sixv0expnegkppds = 6.0 * v0s * np.exp(-1.0 * kappas * ds)
self.energies[a1] += sixv0expnegkppds
self.deds[a1] += -1.0 * kappas * sixv0expnegkppds
self.deds[a1] /= -1.0 * beta * eta2s * sigma1 # factor from ds/dr
def _calc_efs_a1(self, a1, a2, d, invr, dwdroverw, dsigma2s, dsigma2o):
"""Calculate the first term of E_AS and derivatives"""
neghalfv0overgamma2s = self.par['neghalfv0overgamma2'][self.ia2iz[a1]]
neghalfv0overgamma2o = self.par['neghalfv0overgamma2'][self.ia2iz[a2]]
kappas = self.par['kappa'][self.ia2iz[a1]]
kappao = self.par['kappa'][self.ia2iz[a2]]
es = neghalfv0overgamma2s * dsigma2s
eo = neghalfv0overgamma2o * dsigma2o
self.energies[a1] += 0.5 * np.add.reduce(es + eo, axis=0)
dedrs = es * (dwdroverw - kappao / beta)
dedro = eo * (dwdroverw - kappas / beta)
f = ((dedrs + dedro) * invr)[:, None] * d
self.forces[a1] += np.add.reduce(f, axis=0)
self.stress += 0.5 * np.dot(d.T, f) # compensate double counting
def _calc_fs_c_a2(self, a1, a2, d, invr, dwdroverw, dsigma1s, dsigma1o):
"""Calculate forces and stress from E_c and the second term of E_AS"""
eta2s = self.par['eta2'][self.ia2iz[a1]]
eta2o = self.par['eta2'][self.ia2iz[a2]]
ddsigma1sdr = dsigma1s * (dwdroverw - eta2o)
ddsigma1odr = dsigma1o * (dwdroverw - eta2s)
dedrs = self.deds[a1] * ddsigma1sdr
dedro = self.deds[a2] * ddsigma1odr
f = ((dedrs + dedro) * invr)[:, None] * d
self.forces[a1] += np.add.reduce(f, axis=0)
self.stress += 0.5 * np.dot(d.T, f) # compensate double counting