
Theory and implementation behind:

Universal surface creation - smallest unitcell

Bjarke Brink Buus, Jakob Howalt & Thomas Bligaard

August 2, 2019

1 Construction of surface slabs

The aim for this part of the project is to create all possible surfaces with a
given Miller Indice and the conventional bulk structure. In this section, the
theory behind the construction of surface slabs will be outlined and from
this fundament an implementation has been developed in Python. This
implementation, will be able to create any surface for any type of structure
including following common bulk structures - the simple cubic unit cell,
the body centered cubic unit cell, the face centered cubic unit cell and the
hexagonal close packed unit cell.

1.1 Theory

By introducing both the real and the reciprocal lattice spaces most pieces
of the puzzle of creating any surface is derived. In addition some integer
mathmatics will be used.

1.1.1 Real lattice space

First, we will start by defining the system in real space. We have three basis
vectors that span the crystal lattice in the conventional unit cell (~a1,~a2,~a3).
These three vectors do not have to be orthogonal and the procedure will
therefore also work for hcp structures. Additionally, the lengths of the vec-
tors will not in all cases be the same, so the theoretical approach to this
problem, will involve three independent lengths. For most bulk structures
there will only be one or two different lattice constants determining the unit
cell due to symmetry, for instance the L10 and L12 alloys as mentioned in
section XXX method XXX. The unit cell can be seen in drawing 1 with the
lengths and directions.

1

���

��� ���

6
-��9

~a3

~a1 ~a2
a3

a2
a1���

Drawing 1: This drawing shows the basis vectors and sizes for the system.

A surface is defined by its Miller Indice (h,k,l), where h, k and l all are
integers, which in real space can be described by the crystal planes that are
parallel to the plane that intersects the basis vectors (~a1,~a2,~a3) at

1

h
~a1,

1

k
~a2,

1

l
~a3.

The Miller Indices are used for all four types of structures sc, bcc, fcc and
hcp. In case of one or more of the Miller Indice (h,k,l) is zero, the plane
does not intersect with the corresponding axis. For instance, if k is equal to
zero, the normal vector to the plane, defined by (h,0,l), will be orthogonal
to ~a2. A (0,0,0) Miller Indice is unphysical and hence will not be included
in the theory section, however a part of the implementation code will notify
the user that the chosen surface is not possible to create.

1.1.2 Reciprocal lattice space

For the full understanding of the lattice construction, it is very useful to
introduce the reciprocal vector space. The basis vectors in the reciprocal
lattice space are given by,

~b1 =
~a2 × ~a3

~a1 · (~a2 × ~a3)
, ~b2 =

~a3 × ~a1
~a2 · (~a3 × ~a1)

, ~b3 =
~a1 × ~a2

~a3 · (~a1 × ~a2)
(1)

~ai ·~bj = δij (2)

When introducing the reciprocal lattice vectors, the normal vector for a
given surface plane with the Miller Indices (hkl) is given by

~n = h~b1 + k~b2 + l~b3 (3)

2

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

�
�
�
�
�
�
�
�
�
��l
l
l
l
l
l
l
l
ll

((((
((((

((((
(

~t3

~t1

~t2
#
##

#
##

#
##

#
##

((((
((((

(((
((

�
�
�
�
�
�
�
�
�
��l
l
l
l
l
l
l
l
ll

((((
(((

((((
((

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

#
##

6

-
#
#	

~a3

~a1
~a2

6

-
#
#	

~a3

~a1 ~a2

Drawing 2: This drawing shows a surface with Miller Indices (2,1,1). The
repetition of a lattice point is shown, and the vectors spanning this surface
can be found.

Furthermore, a desired surface with a normal vector ~n, drawing 2 shows
that for a set of non-zero Miller indices, three vectors, will be noted ~t1,2,3, in
the plane can easily be found. Two vectors, linearly independent ofcourse,
created by a linear combination of the vectors ~t1,2,3, can span the desired
surface. These vectors are given by

~t1 = −1

h
~a1 +

1

k
~a2,~t2 =

1

k
~a2 −

1

l
~a3,~t3 =

1

h
~a1 −

1

l
~a3

but it should be noted that the anti-parallel versions of ~t1,2,3 also can be
used. Since h, k and l all are integers, we can multiply with the product
hkl and divide with the indice, which will be common for each of the lattice
vectors, ~ai, with respect to both of the lattice vectors ~ai, so a new set of
vectors end up being,

~t1 = k~a1 − h~a2, ~t2 = l~a1 − h~a3, ~t3 = l~a2 − k~a3 (4)

For the special cases of two of the Miller Indices being zero, it is a very
straightforward, to see that the appropriate vectors to span the normal
vector, will be the corresponding basis vectors in real space. If for instance,
h and k both are zero, it will result in a choice of ~v1 = ~a1 and ~v2 = ~a2.

1.1.3 Determination of the two surface vectors

Having introduced the real space and the reciprocal space, most of the theory
is available and hence the determination of the two vectors that span the
surface with respect to a given Miller Indice is possible.

3

The simple lattice points ri,j,m are placed at ~ri,j,m = i~a1 + j~a2 + k~a3
where i, j,m all are integers. Because of the arrangement of the lattice
points, not all surface planes will go through these points. The dot product
between the normal vector ~n and the lattice points ~ri,j,m gives,

hi+ kj + lm = d

and since all constants are integers, d must also be an integer and therefore
the values of d has been quantized. This equation is a ’Linear Diophantine
Equation’ and the smallest d for which there exist an non-zero solution
(i, j,m) when (h, k, l) are non-zero is, accordingly to ’Bezouts Identity’, when
d is the smallest common divisor of h, k, and l. If one or two of the Miller
Indices is zero, the identity is true, but only when choosing the largest
common divisor for the non-zero parts of (h, k, l). If a Miller indice has a
common divisor e > 1, the non-zero components of the Miller Indice can
then be reduced with 1

e (h, k, l), and still define the same surface.
A solution will therefore exist for

hi+ kj + lm = d (5)

and because of the reduction of the normal vector, the value for d will be
±1. The two surface vectors, must obey the fact that they are orthogonal
with respect to the normal vector ~n,

~v1,2 · ~n = 0. (6)

Because of this, the cross product between the two surface vectors ~v1 and
~v2 must give a constant times the normal vector ~n. The constant must be
as small as possible, still non zero, because the area spanned by ~v1 and ~v2 is
equal to the length of the cross product. And since the new normal vector
is the smallest possible, the constant must be ±1.
Consider a choice of the two surface vectors, ~t1 and ~t3. They will both fullfil
equation ??, however the crossproduct between ~t1 and ~t3 will be,

~t1 × ~t3 =

 k
−h
0

×
 0

l
−k

 =

 kh
k2

kl

 = k

 h
k
l

 .
Unless the size of k is ±1, the size of the surface area spanned by ~t1 and ~t3
will be too big. It is therefore crucial to introduce a completely new linear
combination of the three vectors ~t1, ~t2 and ~t3. A linear combination of ~t1

4

and ~t2 fulfill the same requirements when p and q are integers inp
 k
−h
0

+ q

 l
0
−h


×

 0
l
−k

⇒ (pk + ql)

 h
k
l

 =

 h
k
l

 (7)

This leaves a more simple equation to solve,

(pk + ql) = 1 (8)

The solution to this equation can be found using the Extended Euclidean
Algorithm to determine the unknowns integers, p and q. The two new
vectors, which span the surface are described

~v1 = p

 k~a1
−h~a2

0

+ q

 l~a1
0
−h~a3

 , ~v2 =

 0
l~a2
−k~a3

 (9)

However, there are infinite possible solutions for p and q but some of the solu-
tions are better than others, in relation to visualizing the surface. Therefore
another criteria is implemented. The closer to being orthogonal the surface
vectors are, the easier it becomes to apply adsorbates onto the the surface.
The procedure for this will be explained in section ??, but the theory will
be explained here. The solution for p and q can be chosen to accommodate
this with respect to an integer, c, by

~v1 = (p+ cl)

 k~a1
−h~a2

0

+ (q − ck)

 l~a1
0
−h~a3

 (10)

This change of vector ~v1, does not change the crossproduct between ~v1 and
~v2, as shown in equation ??, because the cross product between the changes
and ~v2 is zero. This is shown belowcl

 k~a1
−h~a2

0

− ck
 l~a1

0
−h~a3


×

 0
l~a2
−k~a3

 =

ckl
 h
k
l

− ckl
 h
k
l


 = 0 (11)

This change of ~v1 results in an algorithm, which will be presented later, to
determine the most appropriate choice of vectors.

5

1.1.4 Finding the 3rd vector for the new unit cell

After determining the two vectors spanning the surface (~v1, ~v2), the third
basis vector(~v3) of the surface slab can be found. This vector does not need
to be orthogonal to the two surface vectors. The vector will go from one
lattice point to its repeated lattice point another place in the structure. This
means that the same contraints apply to this vector as for ~v1 and ~v2, but
some additional constraints will be added. The vector will have to be an in-
teger linear combination of the three original lattice vectors (~a1,~a2,~a3) and
have the coordinates (i3~a1, j3~a2,m3~a3). In addition ~v3 cannot be orthogonal
to the surface normal, so ~v3 · ~n 6= 0.
To find the integers i3, j3 and m3 by calculating the dot product using nor-
malvector of the surface from equation ??, and the definitions of the recip-
rocal vectors (~b1,~b2,~b3):

~n · ~v3 = (h~b1 + k~b2 + l~b3) · (i3~a1 + j3~a2 +m3~a3)

= hi3 + kj3 + lm3 = d, (12)

where d must be a non-zero integer because all of h, k, l, i3, j3 and m3 are
integers. It will now be shown that d = 1.
Defining the volume of the conventional unit cell to be V spanned by the
conventional basis ~a1,~a2 and ~a3.

V = (~a1 × ~a2) · ~a3 (13)

and rewriting of the three reciprocal vectors to the following form

V~b1 = ~a2 × ~a3, V~b2 = ~a3 × ~a1, V~b3 = ~a1 × ~a2. (14)

will ease the calculations, and with all the pieces set, a determination of
the value of d is possible. The volume of the cell spanned by (~v1, ~v2, ~v3) is
presented below, where the constants (i,j,m)1,2 refer to the constants defined
by the formalism used for ~v1, equation ??, and for ~v2, equation ??.

V = ~v3 · (~v1 × ~v2) = ~v3 · {(i1~a1 + j1~a2 +m1~a3)× (i2~a1 + j2~a2 +m2~a3)}
= ~v3 · {i1j2~a1 × ~a2 + i1m2~a1 × ~a3 + j1i2~a2 × ~a1 + j1m2~a2 × ~a3}

+~v3 · {m1i2~a3 × ~a1 +m1j2~a3 × ~a2}
= V ~v3 ·

{
i1j2~b3 − i1m2

~b2 − j1i2~b3 + j1m2
~b1 +m1i2~b2 −m1j2~b1

}
= V ~v3 ·


 i1

j1
m1

×
 i2

j2
m2


 ·

 ~b1
~b2
~b3

 (15)

6

The cross product between (i1, j1,m1) and (i2, j2,m2) has been found pre-
viously in equation ?? using the Extended Euclidian Algorithm as (h, k, l).
Inserting this into the equation

V = V ~v3 · (h~b1 + k~b2 + l~b3) = V d. (16)

d is therefore equal to 1. The knowledge of d in equation ?? leads to a new
equation to solve, to determine the third vector ~v3.

~n · ~v3 = (h~b1 + k~b2 + l~b3) · (i3~a1, j3~a2,m3~a3)

= hi3 + kj3 + lm3 = 1 (17)

This equation can be solved using the Extended Euclidean Algorithm for
three variables and therefore the third vector ~v3 is determined. With these
three vectors, (~v1, ~v2, ~v3), a basis for the new unit cell is created. The im-
plementation of this will be described in the following section, along with
some ways to get around the numerical issues in Python.

1.2 Implementation in Python

Based on the theory derived above an arbitrary surface can be created using
the procedure found on the DTU niflheim cluster. To create a surface using
the procedure described in this section a conventional bulk cell of the surface
material is needed along with the Miller indices and the depth of the slab.
The implementation in Python using ASE to setup the atoms consists of
three parts. First, a new basis is derived from the Miller indices with two
of the basis vectors lying in the surface plane. Secondly, the atoms in the
conventional bulk cell are expressed in the terms of the new basis in a slab
with the selected depth. Finally, the unit cell of the slab is modified so the
third cell vector points perpendicular to the surface and all atoms are moved
into the unit cell.

1.2.1 Surface basis

For any surface type described by a Miller indice (h, k, l) the surface basis
(~v1, ~v2, ~v3) is found relative to the conventional bulk unit cell. ~v1 and ~v2 are
chosen to be in the surface plane.
In the special case where only one of the Miller indices is non-zero ~v1 and
~v2 are simply the unit vectors in the directions where the Miller indices are
zero, respectively and ~v3 is the direction where the Miller indice is non-zero.

7

For all other situations ~v1 and ~v2 are found by solving the linear equa-
tion ?? using the Extended Euclidean Algorithm - in the script defined as
ext_gcd(). This yields an infinite set of solutions all of which can be used.
However, the optimal structure is found when the angle between the two
base vectors are as close to 90o as possible, as the structure will be as com-
pact as possible and specific sites are easier to identify. This solution is
found by minimizing the scalar product of the two base vectors by c ∈ Z.∣∣∣∣∣∣∣

(p+ cl)

 k~a1
−h~a2

0

+ (q − ck)

 l~a1
0
−h~a3


 ·

 0
l~a2
−k~a3


∣∣∣∣∣∣∣
min(c)

This can be expressed as |k1 + ck2|min(c) and the solution is found when

c is equal to the fraction −k1
k2

rounded to the nearest integer. Because of
numerical errors a tolerance is used. In python this is expressed as follows.

p,q = ext_gcd(k,l)

k1 = dot(p*(k*a1-h*a2)+q*(l*a1-h*a3) , l*a2-k*a3)

k2 = dot(l*(k*a1-h*a2)-k*(l*a1-h*a3) , l*a2-k*a3)

if abs(k2)>tol:

c = -int(round(k1/k2))

p,q = p+c*l, q-c*k

v1 = p*array((k,-h,0))+q*array((l,0,-h))

v2 = reduce(array((0,l,-k)))

a,b = ext_gcd(p*k+q*l,h)

v3 = array((b,a*p,a*q))

The last four lines define the base vectors for the surface using the Extended
Euclidean Algorithm for two variables to find ~v1 and ~v2 and three variables
to find ~v3.

1.2.2 Atom positions

When the basis have been found the atoms in the conventional cell are
base-changed to the new basis using

for i in range(len(bulk)):

newpos = linalg.solve(basis.T,bulk.get_scaled_positions()[i])

scaled += [newpos-floor(newpos+tol)]

and then moved so the scaled positions in the new basis are within the box
spanned by the basis. The tolerance is needed so atoms positioned exactly

8

on the boundary are treated consistently despite numerical errors. The cell
in the new basis is then repeated in the ~v3 direction to create the required
slap depth.
For many applications it is useful to have the z-direction pointing perpen-
dicular to the surface to enable electrostatic decoupling and to make vacuum
height and adsorbate distance well defined. The next step in the procedure
is therefore to align the z-direction with the cross product of ~v1 and ~v2 with
a length so the cell volume is preserved. The final step before the slab is
created is then to move the atoms so the scaled coordinates are between
0 and 1 in the ~v1 and ~v2 directions making it obvious how the atoms are
located relative to each other when the structure is visualized.

9

